How to use the skimage.color function in skimage

To help you get started, we’ve selected a few skimage examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github gongxijun / lantern-detection / detector / test-classifier.py View on Github external
'/home/gongxijun/data/苹果',
            '/home/gongxijun/data/山楂',
            '/home/gongxijun/data/西瓜',
            '/home/gongxijun/data/object-detector/11',
            '/home/gongxijun/data/灯笼',
            '/home/gongxijun/data/test3',
            '/home/gongxijun/文档'
            ]
    # Read the image
    root_path = list[-1]
    _cnt = 0;
    _num = 0
    for image_path in os.listdir(root_path):
        img = cv2.imread(os.path.join(root_path, image_path))
        img = transform.resize(img, (400, 400))
        imt = color.rgb2gray(img)
        min_wdw_sz = (90, 128)
        step_size = (10, 5)
        downscale = args['downscale']
        visualize_det = args['visualize']

        # Load the classifier
        clf = joblib.load(model_path)

        # List to store the detections
        detections = []
        # The current scale of the image
        scale = 0
        # Downscale the image and iterate
        for im_scaled in pyramid_gaussian(imt, downscale=downscale):
            # This list contains detections at the current scale
            cd = []
github yuanming-hu / exposure / util.py View on Github external
def ProPhotoRGB2Lab(img):
  if not img.shape[2] == 3:
    print('pp_rgb shape', img.shape)
    raise UtilImageError('image channel number is not 3')
  img = linearize_ProPhotoRGB(img)
  xyz = ProPhotoRGB2XYZ(img)
  lab = color.xyz2lab(xyz)
  return lab
github chsasank / Image-Rectification / rectification.py View on Github external
----------
    image: ndarray
        Image for which edgelets are to be computed.
    sigma: float
        Smoothing to be used for canny edge detection.

    Returns
    -------
    locations: ndarray of shape (n_edgelets, 2)
        Locations of each of the edgelets.
    directions: ndarray of shape (n_edgelets, 2)
        Direction of the edge (tangent) at each of the edgelet.
    strengths: ndarray of shape (n_edgelets,)
        Length of the line segments detected for the edgelet.
    """
    gray_img = color.rgb2gray(image)
    edges = feature.canny(gray_img, sigma)
    lines = transform.probabilistic_hough_line(edges, line_length=3,
                                               line_gap=2)

    locations = []
    directions = []
    strengths = []

    for p0, p1 in lines:
        p0, p1 = np.array(p0), np.array(p1)
        locations.append((p0 + p1) / 2)
        directions.append(p1 - p0)
        strengths.append(np.linalg.norm(p1 - p0))

    # convert to numpy arrays and normalize
    locations = np.array(locations)
github ahmedfgad / HOGNumPy / HOG_implementation.py View on Github external
import skimage.io, skimage.color
import numpy
import matplotlib.pyplot
import HOG

img = skimage.io.imread("im_patch.jpg")
img = skimage.color.rgb2gray(img)

horizontal_mask = numpy.array([-1, 0, 1])
vertical_mask = numpy.array([[-1],
                             [0],
                             [1]])

horizontal_gradient = HOG.calculate_gradient(img, horizontal_mask)
vertical_gradient = HOG.calculate_gradient(img, vertical_mask)

grad_magnitude = HOG.gradient_magnitude(horizontal_gradient, vertical_gradient)
grad_direction = HOG.gradient_direction(horizontal_gradient, vertical_gradient)

grad_direction = grad_direction % 180
hist_bins = numpy.array([10,30,50,70,90,110,130,150,170])

# Histogram of the first cell in the first block.
github OCR-D / ocrd_segment / maskrcnn-cli / address.py View on Github external
def load_image(self, image_id):
        """Load the specified image and return a [H,W,4] Numpy array.
        """
        # Load image
        image = skimage.io.imread(self.image_info[image_id]['path'])
        # If grayscale. Convert to RGB for consistency.
        if image.ndim != 3:
            image = skimage.color.gray2rgb(image)
        # If has no alpha channel, complain
        if image.shape[-1] != 4:
            raise Exception('image %d ("%s") has no alpha channel' % (
                image_id, self.image_info[image_id]['path']))
        # Convert from RGBA to RGB+Text+Address
        tmask = image[:,:,3:4] > 0
        amask = image[:,:,3:4] == 255
        image = np.concatenate([image[:,:,:3],
                                255 * tmask.astype(np.uint8),
                                255 * amask.astype(np.uint8)],
                               axis=2)
        return image
github albarji / proxTV / prox_tv / demos / demo_filter_image.py View on Github external
### Example script showing how to perform a 2D Total-Variation filtering with proxTV
import prox_tv as ptv
import matplotlib.pyplot as plt
import time
import skimage as ski
from skimage import io, color, util
import os

# Load image
here = os.path.dirname(os.path.abspath(__file__))
X = io.imread(here + '/colors.png')
X = ski.img_as_float(X)
X = color.rgb2gray(X)

# Introduce noise
noiseLevel = 0.01
N = util.random_noise(X, mode='speckle', var=noiseLevel)

# Filter using 2D TV-L1
lam=0.15;
print('Filtering image with 2D TV-L1...')
start = time.time()
F = ptv.tv1_2d(N, lam)
end = time.time()
print('Elapsed time ' + str(end-start))

# Plot results
plt.subplot(1, 3, 1)
io.imshow(X)
github ternaus / frog-rcnn / dataset / reader.py View on Github external
def multi_mask_to_overlay(multi_mask):
    overlay = skimage.color.label2rgb(multi_mask, bg_label=0, bg_color=(0, 0, 0)) * 255
    overlay = overlay.astype(np.uint8)
    return overlay
github StanfordVL / taskonomy / taskbank / lib / data / load_ops.py View on Github external
def to_light(img, new_dims, new_scale, interp_order=1 ):
    """
    Turn an image into lightness 
        
        Args:
        im : (H x W x K) ndarray
        new_dims : (height, width) tuple of new dimensions.
        new_scale : (min, max) tuple of new scale.
        interp_order : interpolation order, default is linear.
    Returns:
        a lightness version of the original image
    """
    img = skimage.img_as_float( img )
    img = resize_image( img, new_dims, interp_order )
    img = skimage.color.rgb2lab(img)[:,:,0]
    img = rescale_image( img, new_scale, current_scale=[0,100])
    return np.expand_dims(img,2)