How to use pycalphad - 10 common examples

To help you get started, we’ve selected a few pycalphad examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github PhasesResearchLab / ESPEI / tests / test_parameter_generation_utils.py View on Github external
formation enthalpy data and the model needs to have the lower order terms
    in composition.

    One possible issue is that the new GM in the fixed model does not have any
    individual contributions, so it cannot be used to test excluded model
    contributions. The only excluded model contributions in this data are
    idmix, but the property we are testing is HM_FORM, so the feature transform
    of the idmix property should be zero.

    """
    # Hack the namespace to make the copy-pasted Gibbs energy function work
    from sympy import log, Piecewise
    T = v.T

    data = [{'components': ['AL', 'NI', 'VA'], 'phases': ['BCC_B2'], 'solver': {'mode': 'manual', 'sublattice_occupancies': [[1.0, [0.5, 0.5], 1.0], [1.0, [0.75, 0.25], 1.0]], 'sublattice_site_ratios': [0.5, 0.5, 1.0], 'sublattice_configurations': (('AL', ('NI', 'VA'), 'VA'), ('AL', ('NI', 'VA'), 'VA')), 'comment': 'BCC_B2 sublattice configuration (2SL)'}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'reference_state': 'SGTE91', 'output': 'HM_FORM', 'values': np.array([[[-40316.61077, -56361.58554]]]), 'reference': 'C. Jiang 2009 (constrained SQS)', 'excluded_model_contributions': ['idmix']}, {'components': ['AL', 'NI', 'VA'], 'phases': ['BCC_B2'], 'solver': {'mode': 'manual', 'sublattice_occupancies': [[1.0, [0.5, 0.5], 1.0], [1.0, [0.75, 0.25], 1.0]], 'sublattice_site_ratios': [0.5, 0.5, 1.0], 'sublattice_configurations': (('AL', ('NI', 'VA'), 'VA'), ('AL', ('NI', 'VA'), 'VA')), 'comment': 'BCC_B2 sublattice configuration (2SL)'}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'reference_state': 'SGTE91', 'output': 'HM_FORM', 'values': np.array([[[-41921.43363, -57769.49473]]]), 'reference': 'C. Jiang 2009 (relaxed SQS)', 'excluded_model_contributions': ['idmix']}]
    NEW_GM = 8.3145*T*(0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "AL")*log(v.SiteFraction("BCC_B2", 0, "AL")), v.SiteFraction("BCC_B2", 0, "AL") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "NI")*log(v.SiteFraction("BCC_B2", 0, "NI")), v.SiteFraction("BCC_B2", 0, "NI") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "VA")*log(v.SiteFraction("BCC_B2", 0, "VA")), v.SiteFraction("BCC_B2", 0, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "AL")*log(v.SiteFraction("BCC_B2", 1, "AL")), v.SiteFraction("BCC_B2", 1, "AL") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "NI")*log(v.SiteFraction("BCC_B2", 1, "NI")), v.SiteFraction("BCC_B2", 1, "NI") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "VA")*log(v.SiteFraction("BCC_B2", 1, "VA")), v.SiteFraction("BCC_B2", 1, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + Piecewise((v.SiteFraction("BCC_B2", 2, "VA")*log(v.SiteFraction("BCC_B2", 2, "VA")), v.SiteFraction("BCC_B2", 2, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI"))) + (45262.9*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA") + 45262.9*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA"))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + (1.0*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*Piecewise((10083 - 4.813*T, (T >= 298.15) & (T < 2900.0)), (0, True)) + v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA")*(9.52839e-8*T**3 + 0.00123463*T**2 + 0.000871898*T*log(T) + 1.31471*T - 64435.3 + 23095.2/T) + v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "VA")*v.SiteFraction("BCC_B2", 2, "VA")*(10.0*T + 16432.5) + v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*(9.52839e-8*T**3 + 0.00123463*T**2 + 0.000871898*T*log(T) + 1.31471*T - 64435.3 + 23095.2/T) + 1.0*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA")*Piecewise((8715.084 - 3.556*T, (T >= 298.15) & (T < 3000.0)), (0, True)) + 32790.6*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "VA")*v.SiteFraction("BCC_B2", 2, "VA") + v.SiteFraction("BCC_B2", 0, "VA")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*(10.0*T + 16432.5) + 32790.6*v.SiteFraction("BCC_B2", 0, "VA")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA"))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI"))

    dbf = Database("""$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
    $ Date: 2019-12-08 18:05
    $ Components: AL, NI, VA
    $ Phases: BCC_B2
    $ Generated by brandon (pycalphad 0.8.1.post1)
    $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

    ELEMENT AL FCC_A1 26.982 4577.3 28.322 !
    ELEMENT NI FCC_A1 58.69 4787.0 29.796 !
    ELEMENT VA VACUUM 0.0 0.0 0.0 !

    TYPE_DEFINITION % SEQ * !
    DEFINE_SYSTEM_DEFAULT ELEMENT 2 !
    DEFAULT_COMMAND DEFINE_SYSTEM_ELEMENT VA !
github PhasesResearchLab / ESPEI / tests / test_parameter_generation.py View on Github external
def test_initial_database_can_be_supplied(datasets_db):
    """Initial Databases can be passed to parameter generation"""
    initial_dbf = Database(CR_FE_INITIAL_TDB_CONTRIBUTIONS)
    assert len(initial_dbf._parameters.all()) == 11
    dbf = generate_parameters(CR_FE_PHASE_MODELS, datasets_db, 'SGTE91', 'linear', dbf=initial_dbf)
    assert len(dbf._parameters.all()) == 13  # 11 initial parameters + 2 generated endmember parameters
github PhasesResearchLab / ESPEI / tests / test_parameter_generation.py View on Github external
def test_model_contributions_can_be_excluded_mixed_datasets(datasets_db):
    """Model contributions excluded in the datasets should not be fit and should still work when different types of datasets are mixed"""
    datasets_db.insert(CR_FE_HM_MIX_EXCLUDED_MAG)
    datasets_db.insert(CR_FE_HM_MIX_WITH_MAG)
    dbf = generate_parameters(CR_FE_PHASE_MODELS, datasets_db, 'SGTE91', 'linear', dbf=Database(CR_FE_INITIAL_TDB_CONTRIBUTIONS))
    assert dbf.symbols['VV0000'] == 40000  # 4 mol-atom/mol-form * 10000 J/mol-atom, verified with no initial Database
github PhasesResearchLab / ESPEI / tests / test_error_functions.py View on Github external
def test_subsystem_activity_probability(datasets_db):
    """Test binary Cr-Ni data produces the same probability regardless of whether the main system is a binary or ternary."""

    datasets_db.insert(CR_NI_ACTIVITY)

    dbf_bin = Database(CR_NI_TDB)
    dbf_tern = Database(CR_FE_NI_TDB)
    phases = list(dbf_tern.phases.keys())

    # Truth
    bin_prob = calculate_activity_error(dbf_bin, ['CR','NI','VA'], phases, datasets_db, {}, {}, {})

    # Getting binary subsystem data explictly (from binary input)
    prob = calculate_activity_error(dbf_tern, ['CR','NI','VA'], phases, datasets_db, {}, {}, {})
    assert np.isclose(prob, bin_prob)

    # Getting binary subsystem from ternary input
    prob = calculate_activity_error(dbf_tern, ['CR', 'FE', 'NI', 'VA'], phases, datasets_db, {}, {}, {})
    assert np.isclose(prob, bin_prob)
github PhasesResearchLab / ESPEI / tests / test_parameter_generation_utils.py View on Github external
One possible issue is that the new GM in the fixed model does not have any
    individual contributions, so it cannot be used to test excluded model
    contributions. The only excluded model contributions in this data are
    idmix, but the property we are testing is HM_FORM, so the feature transform
    of the idmix property should be zero.

    """
    # Hack the namespace to make the copy-pasted Gibbs energy function work
    from sympy import log, Piecewise
    T = v.T

    data = [{'components': ['AL', 'NI', 'VA'], 'phases': ['BCC_B2'], 'solver': {'mode': 'manual', 'sublattice_occupancies': [[1.0, [0.5, 0.5], 1.0], [1.0, [0.75, 0.25], 1.0]], 'sublattice_site_ratios': [0.5, 0.5, 1.0], 'sublattice_configurations': (('AL', ('NI', 'VA'), 'VA'), ('AL', ('NI', 'VA'), 'VA')), 'comment': 'BCC_B2 sublattice configuration (2SL)'}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'reference_state': 'SGTE91', 'output': 'HM_FORM', 'values': np.array([[[-40316.61077, -56361.58554]]]), 'reference': 'C. Jiang 2009 (constrained SQS)', 'excluded_model_contributions': ['idmix']}, {'components': ['AL', 'NI', 'VA'], 'phases': ['BCC_B2'], 'solver': {'mode': 'manual', 'sublattice_occupancies': [[1.0, [0.5, 0.5], 1.0], [1.0, [0.75, 0.25], 1.0]], 'sublattice_site_ratios': [0.5, 0.5, 1.0], 'sublattice_configurations': (('AL', ('NI', 'VA'), 'VA'), ('AL', ('NI', 'VA'), 'VA')), 'comment': 'BCC_B2 sublattice configuration (2SL)'}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'reference_state': 'SGTE91', 'output': 'HM_FORM', 'values': np.array([[[-41921.43363, -57769.49473]]]), 'reference': 'C. Jiang 2009 (relaxed SQS)', 'excluded_model_contributions': ['idmix']}]
    NEW_GM = 8.3145*T*(0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "AL")*log(v.SiteFraction("BCC_B2", 0, "AL")), v.SiteFraction("BCC_B2", 0, "AL") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "NI")*log(v.SiteFraction("BCC_B2", 0, "NI")), v.SiteFraction("BCC_B2", 0, "NI") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "VA")*log(v.SiteFraction("BCC_B2", 0, "VA")), v.SiteFraction("BCC_B2", 0, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "AL")*log(v.SiteFraction("BCC_B2", 1, "AL")), v.SiteFraction("BCC_B2", 1, "AL") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "NI")*log(v.SiteFraction("BCC_B2", 1, "NI")), v.SiteFraction("BCC_B2", 1, "NI") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "VA")*log(v.SiteFraction("BCC_B2", 1, "VA")), v.SiteFraction("BCC_B2", 1, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + Piecewise((v.SiteFraction("BCC_B2", 2, "VA")*log(v.SiteFraction("BCC_B2", 2, "VA")), v.SiteFraction("BCC_B2", 2, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI"))) + (45262.9*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA") + 45262.9*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA"))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + (1.0*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*Piecewise((10083 - 4.813*T, (T >= 298.15) & (T < 2900.0)), (0, True)) + v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA")*(9.52839e-8*T**3 + 0.00123463*T**2 + 0.000871898*T*log(T) + 1.31471*T - 64435.3 + 23095.2/T) + v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "VA")*v.SiteFraction("BCC_B2", 2, "VA")*(10.0*T + 16432.5) + v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*(9.52839e-8*T**3 + 0.00123463*T**2 + 0.000871898*T*log(T) + 1.31471*T - 64435.3 + 23095.2/T) + 1.0*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA")*Piecewise((8715.084 - 3.556*T, (T >= 298.15) & (T < 3000.0)), (0, True)) + 32790.6*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "VA")*v.SiteFraction("BCC_B2", 2, "VA") + v.SiteFraction("BCC_B2", 0, "VA")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*(10.0*T + 16432.5) + 32790.6*v.SiteFraction("BCC_B2", 0, "VA")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA"))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI"))

    dbf = Database("""$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
    $ Date: 2019-12-08 18:05
    $ Components: AL, NI, VA
    $ Phases: BCC_B2
    $ Generated by brandon (pycalphad 0.8.1.post1)
    $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

    ELEMENT AL FCC_A1 26.982 4577.3 28.322 !
    ELEMENT NI FCC_A1 58.69 4787.0 29.796 !
    ELEMENT VA VACUUM 0.0 0.0 0.0 !

    TYPE_DEFINITION % SEQ * !
    DEFINE_SYSTEM_DEFAULT ELEMENT 2 !
    DEFAULT_COMMAND DEFINE_SYSTEM_ELEMENT VA !

    PHASE BCC_B2 %  3 0.5 0.5 1 !
    CONSTITUENT BCC_B2 :AL,NI,VA:AL,NI,VA:VA: !
github PhasesResearchLab / ESPEI / tests / test_parameter_generation_utils.py View on Github external
We just have a template database that has the phase defined. We then hot
    patch the Model object to have the GM from the fixed model we printed out
    and the data we printed out. The hot patch is needed because this is
    formation enthalpy data and the model needs to have the lower order terms
    in composition.

    One possible issue is that the new GM in the fixed model does not have any
    individual contributions, so it cannot be used to test excluded model
    contributions. The only excluded model contributions in this data are
    idmix, but the property we are testing is HM_FORM, so the feature transform
    of the idmix property should be zero.

    """
    # Hack the namespace to make the copy-pasted Gibbs energy function work
    from sympy import log, Piecewise
    T = v.T

    data = [{'components': ['AL', 'NI', 'VA'], 'phases': ['BCC_B2'], 'solver': {'mode': 'manual', 'sublattice_occupancies': [[1.0, [0.5, 0.5], 1.0], [1.0, [0.75, 0.25], 1.0]], 'sublattice_site_ratios': [0.5, 0.5, 1.0], 'sublattice_configurations': (('AL', ('NI', 'VA'), 'VA'), ('AL', ('NI', 'VA'), 'VA')), 'comment': 'BCC_B2 sublattice configuration (2SL)'}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'reference_state': 'SGTE91', 'output': 'HM_FORM', 'values': np.array([[[-40316.61077, -56361.58554]]]), 'reference': 'C. Jiang 2009 (constrained SQS)', 'excluded_model_contributions': ['idmix']}, {'components': ['AL', 'NI', 'VA'], 'phases': ['BCC_B2'], 'solver': {'mode': 'manual', 'sublattice_occupancies': [[1.0, [0.5, 0.5], 1.0], [1.0, [0.75, 0.25], 1.0]], 'sublattice_site_ratios': [0.5, 0.5, 1.0], 'sublattice_configurations': (('AL', ('NI', 'VA'), 'VA'), ('AL', ('NI', 'VA'), 'VA')), 'comment': 'BCC_B2 sublattice configuration (2SL)'}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'reference_state': 'SGTE91', 'output': 'HM_FORM', 'values': np.array([[[-41921.43363, -57769.49473]]]), 'reference': 'C. Jiang 2009 (relaxed SQS)', 'excluded_model_contributions': ['idmix']}]
    NEW_GM = 8.3145*T*(0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "AL")*log(v.SiteFraction("BCC_B2", 0, "AL")), v.SiteFraction("BCC_B2", 0, "AL") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "NI")*log(v.SiteFraction("BCC_B2", 0, "NI")), v.SiteFraction("BCC_B2", 0, "NI") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 0, "VA")*log(v.SiteFraction("BCC_B2", 0, "VA")), v.SiteFraction("BCC_B2", 0, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "AL")*log(v.SiteFraction("BCC_B2", 1, "AL")), v.SiteFraction("BCC_B2", 1, "AL") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "NI")*log(v.SiteFraction("BCC_B2", 1, "NI")), v.SiteFraction("BCC_B2", 1, "NI") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + 0.5*Piecewise((v.SiteFraction("BCC_B2", 1, "VA")*log(v.SiteFraction("BCC_B2", 1, "VA")), v.SiteFraction("BCC_B2", 1, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + Piecewise((v.SiteFraction("BCC_B2", 2, "VA")*log(v.SiteFraction("BCC_B2", 2, "VA")), v.SiteFraction("BCC_B2", 2, "VA") > 1.0e-16), (0, True))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI"))) + (45262.9*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA") + 45262.9*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA"))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI")) + (1.0*v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*Piecewise((10083 - 4.813*T, (T >= 298.15) & (T < 2900.0)), (0, True)) + v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA")*(9.52839e-8*T**3 + 0.00123463*T**2 + 0.000871898*T*log(T) + 1.31471*T - 64435.3 + 23095.2/T) + v.SiteFraction("BCC_B2", 0, "AL")*v.SiteFraction("BCC_B2", 1, "VA")*v.SiteFraction("BCC_B2", 2, "VA")*(10.0*T + 16432.5) + v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*(9.52839e-8*T**3 + 0.00123463*T**2 + 0.000871898*T*log(T) + 1.31471*T - 64435.3 + 23095.2/T) + 1.0*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA")*Piecewise((8715.084 - 3.556*T, (T >= 298.15) & (T < 3000.0)), (0, True)) + 32790.6*v.SiteFraction("BCC_B2", 0, "NI")*v.SiteFraction("BCC_B2", 1, "VA")*v.SiteFraction("BCC_B2", 2, "VA") + v.SiteFraction("BCC_B2", 0, "VA")*v.SiteFraction("BCC_B2", 1, "AL")*v.SiteFraction("BCC_B2", 2, "VA")*(10.0*T + 16432.5) + 32790.6*v.SiteFraction("BCC_B2", 0, "VA")*v.SiteFraction("BCC_B2", 1, "NI")*v.SiteFraction("BCC_B2", 2, "VA"))/(0.5*v.SiteFraction("BCC_B2", 0, "AL") + 0.5*v.SiteFraction("BCC_B2", 0, "NI") + 0.5*v.SiteFraction("BCC_B2", 1, "AL") + 0.5*v.SiteFraction("BCC_B2", 1, "NI"))

    dbf = Database("""$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
    $ Date: 2019-12-08 18:05
    $ Components: AL, NI, VA
    $ Phases: BCC_B2
    $ Generated by brandon (pycalphad 0.8.1.post1)
    $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

    ELEMENT AL FCC_A1 26.982 4577.3 28.322 !
    ELEMENT NI FCC_A1 58.69 4787.0 29.796 !
    ELEMENT VA VACUUM 0.0 0.0 0.0 !

    TYPE_DEFINITION % SEQ * !
github PhasesResearchLab / ESPEI / tests / test_gdq.py View on Github external
def test_get_data_quantities_mixing_entropy():
    """Test that mixing entropy produces correct data quantities.

    """
    data = [{'components': ['AL', 'CR'], 'phases': ['AL11CR2'], 'solver': {'mode': 'manual', 'sublattice_site_ratios': [10.0, 2.0], 'sublattice_configurations': (('AL', ('AL', 'CR')),), 'sublattice_occupancies': [[1.0, [0.5, 0.5]]]}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'output': 'SM_MIX', 'values': np.array([[[0.60605556]]]), 'reference': 'text 1 to write down reference for this work', 'comment': 'test 2 to write down comment for this work', 'excluded_model_contributions': ['idmix']}]

    dbf = Database("""
    ELEMENT AL FCC_A1 26.982 4577.3 28.322 !
    ELEMENT CR BCC_A2 51.996 4050.0 23.56 !

    PHASE AL11CR2 %  2 10.0 2.0 !
    CONSTITUENT AL11CR2 :AL:AL,CR: !

    """)
    mod = Model(dbf, ['AL', 'CR'], 'AL11CR2')
    print(get_samples(data))
    # desired_property, fixed_model, fixed_portions, data, samples
    qty = get_data_quantities('SM_MIX', mod, [0], data)
    print(qty)
    assert np.all(np.isclose([7.27266667], qty))
github PhasesResearchLab / ESPEI / tests / test_parameter_generation_utils.py View on Github external
def test_get_data_quantities_mixing_entropy():
    """Test that mixing entropy produces correct data quantities with excluded idmix model contribution
    """
    data = [{'components': ['AL', 'CR'], 'phases': ['AL11CR2'], 'solver': {'mode': 'manual', 'sublattice_site_ratios': [10.0, 2.0], 'sublattice_configurations': (('AL', ('AL', 'CR')),), 'sublattice_occupancies': [[1.0, [0.5, 0.5]]]}, 'conditions': {'P': 101325.0, 'T': np.array([300.])}, 'output': 'SM_MIX', 'values': np.array([[[0.60605556]]]), 'reference': 'text 1 to write down reference for this work', 'comment': 'test 2 to write down comment for this work', 'excluded_model_contributions': ['idmix']}]

    dbf = Database("""
    ELEMENT AL FCC_A1 26.982 4577.3 28.322 !
    ELEMENT CR BCC_A2 51.996 4050.0 23.56 !

    PHASE AL11CR2 %  2 10.0 2.0 !
    CONSTITUENT AL11CR2 :AL:AL,CR: !

    """)
    mod = Model(dbf, ['AL', 'CR'], 'AL11CR2')
    print(get_samples(data))
    # desired_property, fixed_model, fixed_portions, data, samples
    qty = get_data_quantities('SM_MIX', mod, [0], data)
    print(qty)
    assert np.all(np.isclose([7.27266667], qty))
github PhasesResearchLab / ESPEI / espei / error_functions / equilibrium_thermochemical_error.py View on Github external
property_output = output.split('_')[0]  # property without _FORM, _MIX, etc.
    samples = np.array(data['values']).flatten()
    reference = data.get('reference', '')

    # Models are now modified in response to the data from this data
    if 'reference_states' in data:
        property_output = output[:-1] if output.endswith('R') else output  # unreferenced model property so we can tell shift_reference_state what to build.
        reference_states = []
        for el, vals in data['reference_states'].items():
            reference_states.append(ReferenceState(v.Species(el), vals['phase'], fixed_statevars=vals.get('fixed_state_variables')))
        for mod in models.values():
            mod.shift_reference_state(reference_states, dbf, output=(property_output,))

    data['conditions'].setdefault('N', 1.0)  # Add default for N. Nothing else is supported in pycalphad anyway.
    pot_conds = OrderedDict([(getattr(v, key), unpack_condition(data['conditions'][key])) for key in sorted(data['conditions'].keys()) if not key.startswith('X_')])
    comp_conds = OrderedDict([(v.X(key[2:]), unpack_condition(data['conditions'][key])) for key in sorted(data['conditions'].keys()) if key.startswith('X_')])

    phase_records = build_phase_records(dbf, species, data_phases, {**pot_conds, **comp_conds}, models, parameters=parameters, build_gradients=True, build_hessians=True)

    # Now we need to unravel the composition conditions
    # (from Dict[v.X, Sequence[float]] to Sequence[Dict[v.X, float]]), since the
    # composition conditions are only broadcast against the potentials, not
    # each other. Each individual composition needs to be computed
    # independently, since broadcasting over composition cannot be turned off
    # in pycalphad.
    rav_comp_conds = [OrderedDict(zip(comp_conds.keys(), pt_comps)) for pt_comps in zip(*comp_conds.values())]

    # Build weights, should be the same size as the values
    total_num_calculations = len(rav_comp_conds)*np.prod([len(vals) for vals in pot_conds.values()])
    dataset_weights = np.array(data.get('weight', 1.0)) * np.ones(total_num_calculations)
    weights = (property_std_deviation.get(property_output, 1.0)/data_weight_dict.get(property_output, 1.0)/dataset_weights).flatten()
github pycalphad / pycalphad / research / sedimodel.py View on Github external
def run_test():
    dbf = Database()
    dbf.elements = frozenset(['A'])
    dbf.add_phase('TEST', {}, [1])
    dbf.add_phase_constituents('TEST', [['A']])
    # add THETA parameters here
    dbf.add_parameter('THETA', 'TEST', [['A']], 0, 334.)
    conds = {v.T: np.arange(1.,800.,1), v.P: 101325}
    res = calculate(dbf, ['A'], 'TEST', T=conds[v.T], P=conds[v.P],
                    model=EinsteinModel, output='testprop')
    #res_TE = calculate(dbf, ['A'], 'TEST', T=conds[v.T], P=conds[v.P],
    #                model=EinsteinModel, output='einstein_temperature')
    import matplotlib.pyplot as plt
    plt.scatter(res['T'], res['testprop'])
    plt.xlabel('Temperature (K)')
    plt.ylabel('Molar Heat Capacity (J/mol-K)')
    plt.savefig('einstein.png')
    print(dbf.to_string(fmt='tdb'))