Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
try:
from colorama import Fore, Style, init
except ImportError:
pass
from ethereum import tester as t
from pyconsensus import Oracle
ROOT = os.path.join(os.path.dirname(os.path.realpath(__file__)),
os.pardir, os.pardir, "consensus")
np.set_printoptions(linewidth=225,
suppress=True,
formatter={"float": "{: 0.6f}".format})
pd.set_option("display.max_rows", 25)
pd.set_option("display.width", 1000)
pd.set_option('display.float_format', lambda x: '%.8f' % x)
# max_iterations: number of blocks required to complete PCA
verbose = False
max_iterations = 5
tolerance = 0.05
variance_threshold = 0.85
max_components = 5
init()
YES = 2.0
NO = 1.0
BAD = 1.5
NA = 0.0
def BR(string): # bright red
10.0, 5.0, 5.0, 5.0, 5.0, 0.0, 5.0, 5.0, 5.0]],
index=[0, 1, 2])
test_front_end_option = SimilarityFrontEndOption(
comp_file_id=2, sort_ascending=True, sort_column=0)
test_id_table = {0: "F1.txt", 1: "F2.txt", 2: "F3.txt"}
similarity_model = SimilarityModel(
test_options=SimilarityTestOption(
doc_term_matrix=test_dtm,
front_end_option=test_front_end_option,
document_label_map=test_id_table
)
)
pd.testing.assert_frame_equal(
similarity_model._get_similarity_query(),
pd.DataFrame(index=["Documents", "Cosine Similarity"],
data=[["F1.txt", "F2.txt"], [1., 1.]]).transpose()
)
"IOC", "HINDPETRO", "HEROMOTOCO",
"M&M", "ULTRACEMCO", "BAJAJFINSV",
"TATASTEEL", "HDFC", "BHARTIARTL",
"EICHERMOT", "JSWSTEEL", "ASIANPAINT",
"BAJAJ-AUTO", "AXISBANK", "YESBANK",
"IBULHSGFIN", "ITC", "LT",
"UPL", "KOTAKBANK", "HDFCBANK",
"HINDUNILVR", "ONGC", "TITAN",
"RELIANCE", "GAIL", "POWERGRID",
"NTPC", "COALINDIA", "ICICIBANK",
"SUNPHARMA", "INFRATEL", "GRASIM",
"SBIN", "HCLTECH", "INFY", "TCS",
"BAJFINANCE", "ZEEL", "CIPLA", "DRREDDY",
"WIPRO", "TECHM"]
self.all_stock_data = pd.DataFrame(columns=['Stock', 'Volume', 'High', 'Low'])
i = 0
for stock in self.nifty_50_stocks:
stock_data = fetch_stock_data(stock, 1, '1d')
self.all_stock_data.loc[i] = [stock, stock_data['Volume'].mean(), stock_data['High'].mean(),
stock_data['Low'].mean()]
i = i + 1
print('Fetched data for all nifty 50 stocks')
def test_nonvectorized_math_apply_on_large_dataframe_broadcast(self):
LOG.info("test_nonvectorized_math_apply_on_large_dataframe_broadcast")
df = pd.DataFrame({"x": np.random.normal(size=1_000_000), "y": np.random.uniform(size=1_000_000)})
tqdm.pandas(desc="Pandas Nonvec math apply + broadcast ~ DF")
start_pd = time.time()
pd_val = df.progress_apply(math_agg_foo, axis=1, result_type="broadcast")
end_pd = time.time()
pd_time = end_pd - start_pd
start_swifter = time.time()
swifter_val = df.swifter.progress_bar(desc="Nonvec math apply + broadcast ~ DF").apply(
math_agg_foo, axis=1, result_type="broadcast"
)
end_swifter = time.time()
swifter_time = end_swifter - start_swifter
self.assertEqual(pd_val, swifter_val) # equality test
if self.ncores > 1: # speed test
import pandas as pd
import numpy as np
import pyaf.ForecastEngine as autof
import datetime
#get_ipython().magic('matplotlib inline')
trainfile = "https://raw.githubusercontent.com/antoinecarme/TimeSeriesData/master/HeartRateTimeSeries/hr.207"
df = pd.read_csv(trainfile, sep=r',', engine='python', skiprows=0);
df.columns = ['HeartRate']
df['Date'] = range(df.shape[0]);
print(df.head());
lDateVar = 'Date'
lSignalVar = 'HeartRate'
lEngine = autof.cForecastEngine()
lEngine
H = 10;
#lEngine.mOptions.enable_slow_mode();
lEngine.mOptions.mDebugPerformance = True;
lEngine.train(df , lDateVar , lSignalVar, H);
lEngine.getModelInfo();
def get_snapshot(data,
file_name,
evaluation_point_loc):
"""Main function wrapper to assemble snapshot dataframes"""
# Start by getting the 48-hour window ± 24hrs around the evaluation point
evaluation_index = data.index[data.id == evaluation_point_loc]
data["rounded_local_time"] = \
pd.to_datetime(data["est.localTime"],
utc=True).dt.ceil(freq="5min")
evaluation_time = \
pd.to_datetime(data.loc[evaluation_index,
'rounded_local_time'].values[0],
utc=True)
df_misc = get_time_to_calculate_at(evaluation_time)
start_time = evaluation_time - datetime.timedelta(days=1)
end_time = evaluation_time + datetime.timedelta(days=1)
snapshot_df = data[(data['rounded_local_time'] >= start_time) &
(data['rounded_local_time'] <= end_time)]
# Get pumpSettings list of active schedules
active_schedule = get_active_schedule(data,
snapshot_df,
file_name,
evaluation_point_loc,
def test_caltrack_sufficiency_criteria_fail_no_gap_and_not_enough_days():
data_quality = pd.DataFrame(
{
"meter_value": [1, 1],
"temperature_not_null": [1, 5],
"temperature_null": [0, 5],
"start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"),
}
).set_index("start")
requested_start = pd.Timestamp("2016-01-02").tz_localize("UTC")
requested_end = pd.Timestamp("2016-01-04").tz_localize("UTC")
data_sufficiency = caltrack_sufficiency_criteria(
data_quality,
requested_start,
requested_end,
num_days=3,
min_fraction_daily_coverage=0.9,
min_fraction_hourly_temperature_coverage_per_period=0.9,
)
assert data_sufficiency.status == "FAIL"
assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria")
assert len(data_sufficiency.warnings) == 4
warning0 = data_sufficiency.warnings[0]
assert warning0.qualified_name == (
"eemeter.caltrack_sufficiency_criteria.incorrect_number_of_total_days"
df.index.name = 'date'
chunkstore_lib.write('data', df, audit={'user': 'test_user'})
df = DataFrame(data={'data': np.random.randint(0, 100, size=10)},
index=pd.date_range('2016-01-01', '2016-01-10'))
df.index.name = 'date'
chunkstore_lib.write('data', df, audit={'user': 'other_user'})
assert(len(chunkstore_lib.read_audit_log()) == 2)
assert(len(chunkstore_lib.read_audit_log(symbol='data')) == 2)
assert(len(chunkstore_lib.read_audit_log(symbol='none')) == 0)
chunkstore_lib.append('data', df, audit={'user': 'test_user'})
assert(chunkstore_lib.read_audit_log()[-1]['appended_rows'] == 10)
df = DataFrame(data={'data': np.random.randint(0, 100, size=5)},
index=pd.date_range('2017-01-01', '2017-01-5'))
df.index.name = 'date'
chunkstore_lib.update('data', df, audit={'user': 'other_user'})
assert(chunkstore_lib.read_audit_log()[-1]['new_chunks'] == 5)
chunkstore_lib.rename('data', 'data_new', audit={'user': 'temp_user'})
assert(chunkstore_lib.read_audit_log()[-1]['action'] == 'symbol rename')
chunkstore_lib.delete('data_new', chunk_range=DateRange('2016-01-01', '2016-01-02'), audit={'user': 'test_user'})
chunkstore_lib.delete('data_new', audit={'user': 'test_user'})
assert(chunkstore_lib.read_audit_log()[-1]['action'] == 'symbol delete')
assert(chunkstore_lib.read_audit_log()[-2]['action'] == 'range delete')
def test_strategybase_tree_allocate_long_short():
c1 = SecurityBase('c1')
c2 = SecurityBase('c2')
s = StrategyBase('p', [c1, c2])
c1 = s['c1']
c2 = s['c2']
dts = pd.date_range('2010-01-01', periods=3)
data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100)
data['c1'][dts[1]] = 105
data['c2'][dts[1]] = 95
s.setup(data)
i = 0
s.update(dts[i], data.ix[dts[i]])
s.adjust(1000)
c1.allocate(500)
assert c1.position == 5
assert c1.value == 500
assert c1.weight == 500.0 / 1000
assert s.capital == 1000 - 500
def test_select_has_data_preselected():
algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3))
s = bt.Strategy('s')
dts = pd.date_range('2010-01-01', periods=3)
data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.)
data['c1'].ix[dts[0]] = np.nan
data['c1'].ix[dts[1]] = np.nan
s.setup(data)
s.update(dts[2])
s.temp['selected'] = ['c1']
assert algo(s)
selected = s.temp['selected']
assert len(selected) == 0