How to use the pandas.DataFrame.from_records function in pandas

To help you get started, we’ve selected a few pandas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github jtwhite79 / pyemu / autotest / moouu_tests.py View on Github external
drn_spd = []
    print(mf.drn.stress_period_data[0].dtype)
    drn_stage = mf.drn.stress_period_data[0]["elev"][0]
    i = mfr.nrow - 1
    ib = mfr.bas6.ibound[0].array
    for j in range(mfr.ncol):
        if ib[i,j] == 0:
            continue
        drn_spd.append([0,i,j,drn_stage,10.0])




    flopy.modflow.ModflowDrn(mfr,stress_period_data={0:drn_spd})

    rdata = pd.DataFrame.from_records(mf.sfr.reach_data)
    sdata = pd.DataFrame.from_records(mf.sfr.segment_data[0])
    print(rdata.reachID)

    rdata = rdata.reindex(np.arange(mfr.nrow))
    #print(rdata.strthick)
    #return
    rdata.loc[:,'k'] = 0
    rdata.loc[:,'j'] = (rdata.loc[0,"j"] * fac) + int(fac / 2.0)
    rdata.loc[:,'rchlen'] = mfr.dis.delc.array
    rdata.loc[:,'i'] = np.arange(mfr.nrow)
    rdata.loc[:,"iseg"] = rdata.i + 1
    rdata.loc[:,"ireach"] = 1
    rdata.loc[:,"reachID"] = rdata.index.values
    rdata.loc[:,"outreach"] = rdata.reachID + 1
    rdata.loc[mfr.nrow-1,"outreach"] = 0
    rdata.loc[:,"node"] = rdata.index.values
github dezede / dezede / exporter / base.py View on Github external
def _get_dataframe(self):
        if self.lookups:
            df = pandas.DataFrame.from_records(
                list(self.get_queryset().values_list(*self.lookups)),
                columns=self.lookups,
            )
        else:
            df = pandas.DataFrame()

        def clean_null_int(x):
            if x is None or isnan(x):
                return ''
            return int(x)

        # Avoids float representation of nullable integer fields
        for lookup in self.null_int_lookups:
            df[lookup] = df[lookup].apply(clean_null_int)

        def remove_timezone(dt):
github openml / openml-python / openml / evaluations / functions.py View on Github external
'setup_id': int(eval_['oml:setup_id']),
                             'flow_id': int(eval_['oml:flow_id']),
                             'flow_name': eval_['oml:flow_name'],
                             'data_id': int(eval_['oml:data_id']),
                             'data_name': eval_['oml:data_name'],
                             'function': eval_['oml:function'],
                             'upload_time': eval_['oml:upload_time'],
                             'uploader': int(eval_['oml:uploader']),
                             'uploader_name': user_dict[eval_['oml:uploader']],
                             'value': value,
                             'values': values,
                             'array_data': array_data}

    if output_format == 'dataframe':
        rows = [value for key, value in evals.items()]
        evals = pd.DataFrame.from_records(rows, columns=rows[0].keys())
    return evals
github dblalock / bolt / experiments / python / figs.py View on Github external
# 'Matmul Batch 1': 1, 'Matmul Batch 16': 16,
                       # 'Matmul Batch 64': 64, 'Matmul Batch 256': 256}
                       # 'Matmul Batch1': 1, 'Matmul Batch16': 16,
                       # 'Matmul Batch64': 64, 'Matmul Batch256': 256}
                       'Matmul 1': 1, 'Matmul 16': 16, 'Matmul 64': 64,
                       'Matmul 256': 256}

        for i, nbytes in enumerate([8, 16, 32]):
            bytes_str = '{}B'.format(nbytes)
            dicts = []
            for algo in ALGOS:
                dps = np.random.randn(10) + 256 / nbytes
                dps += algo2offset[algo] / nbytes
                dicts += [{'algo': algo, 'nbytes': bytes_str, 'y': y} for y in dps]

            df = pd.DataFrame.from_records(dicts)
    else:
        # ALGOS = ['Bolt', 'PQ', 'OPQ', 'PairQ', 'Matmul 1', # 'Matmul 16',
        #          'Matmul 64', 'Matmul 256', 'Matmul 1024']

        if with_matmuls:
            ALGOS = ['Bolt', 'Binary Embedding', 'PQ', 'OPQ',
                     'Matmul 1', 'Matmul 256', 'Matmul 1024']
        else:
            ALGOS = ['Bolt', 'Binary Embedding', 'PQ', 'OPQ']
        df = results.query_speed_results()
        df['y'] = df['y'] / 1e9  # convert to billions

    print("df cols: ", df.columns)
    df.rename(columns={'algo': ' '}, inplace=True)  # hide from legend

    # ax = sb.barplot(x='x', y='y', hue=' ', ci=95, data=df, ax=axes[i])
github CityofSantaMonica / mds-provider / mds / files.py View on Github external
if len(records) == 0:
            return records

        version = Version(records[0][0])

        if flatten:
            if not all([Version(v) == version for v,_ in records]):
                unexpected = [Version(v) for v,_ in records if Version(v) != version][0]
                raise UnexpectedVersionError(unexpected, version)
            # combine each record list
            records = [item for _,data in records for item in data]
            return version, pd.DataFrame.from_records(records)
        else:
            # list of version, DataFrame tuples
            return [(Version(r[0]), pd.DataFrame.from_records(r[1])) for r in records]
github hammerlab / immuno / immuno / strings.py View on Github external
rows = []
    for string in strings:
        full_peptide, start, stop = parse_string(string)
        row = {}
        row['SourceSequence'] = full_peptide
        row['MutationStart'] = start
        row['MutationEnd'] = stop
        row['GeneInfo'] = source
        row['Gene'] = '-'
        row['GeneMutationInfo'] = "-"
        row['PeptideMutationInfo'] = "-"
        row['TranscriptId'] = "-"

        rows.append(row)
    return pd.DataFrame.from_records(rows,
        columns = (
            'SourceSequence',
            'MutationStart',
            'MutationEnd',
            'GeneInfo',
            'Gene',
            'GeneMutationInfo',
            'PeptideMutationInfo',
            'TranscriptId',
        ))
github openmc-dev / openmc / openmc / data / resonance_covariance.py View on Github external
# Delete 0 values (not provided in evaluation)
                res_unc = [x for x in res_unc if x != 0.0]
                par_unc.extend(res_unc)

            records = []
            for i, E in enumerate(energy):
                records.append([energy[i], spin[i], gn[i], gg[i],
                                gfa[i], gfb[i]])

            corr = endf.get_intg_record(file_obj)
            cov = np.diag(par_unc).dot(corr).dot(np.diag(par_unc))

        # Create pandas DataFrame with resonacne data
        columns = ['energy', 'J', 'neutronWidth', 'captureWidth',
                   'fissionWidthA', 'fissionWidthB']
        parameters = pd.DataFrame.from_records(records, columns=columns)

        # Determine mpar (number of parameters for each resonance in
        # covariance matrix)
        nparams, params = parameters.shape
        covsize = cov.shape[0]
        mpar = int(covsize/nparams)

        # Add parameters from File 2
        parameters = _add_file2_contributions(parameters,
                                              resonance.parameters)
        # Create instance of ReichMooreCovariance
        rmc = cls(energy_min, energy_max, parameters, cov, mpar, lcomp,
                  resonance)
        return rmc
github Viandoks / python-crypto-bot / botchart.py View on Github external
def drawChart(self, candlesticks, orders, movingAverages):

        # googlecharts
        output = open("./output/data.js",'w')
        output.truncate()

        # candlesticks
        candlesticks = pd.DataFrame.from_records([c.toDict() for c in candlesticks])
        ma = pd.DataFrame(movingAverages)
        if len(ma) > 0:
            candlesticks['ma'] = ma
        else:
            candlesticks['ma'] = 0
        candlesticks['date'] = candlesticks['date']/1000
        candlesticks.set_index('date', inplace=True)

        # orders
        orders = pd.DataFrame.from_records([o.toDict() for o in orders])
        orders['date'] = orders['date']/1000
        if len(orders)>1:
            orders.set_index('date', inplace=True)
        else :
            orders['orderNumber'] = 0
            orders['rate'] = 0
github daneads / pypatent / pypatent / __init__.py View on Github external
def as_dataframe(self) -> pd.DataFrame:
        if self.get_patent_details:
            return pd.DataFrame.from_records(self.as_list(), index='patent_num')
        else:
            return pd.DataFrame.from_records(self.as_list())
github LinkageIO / Camoco / camoco / COB.py View on Github external
locus_list,
                flank_limit=flank_limit,
                chain=True,
                include_parent_locus=True,
            )
        # Extract the edges for the full set of genes
        edges = self.subnetwork(
            genes_list,
            min_distance=0,
            sig_only=False,
            trans_locus_only=True,
            names_as_index=True,
        )
        if by_gene == True:
            # Filter out trans edges
            gene_split = pd.DataFrame.from_records(
                chain(
                    *[
                        ((gene_a, score), (gene_b, score))
                        for gene_a, gene_b, score, *junk in edges[edges.trans == True]
                        .reset_index()
                        .values
                    ]
                ),
                columns=["gene", "score"],
            )
            gene_split = gene_split.groupby("gene").agg(np.mean)
            if iter_name is not None:
                gene_split["iter"] = iter_name
            gene_split.index.name = "gene"
            gene_split["num_trans_edges"] = len(edges)
            return gene_split