How to use the pandas.Timestamp function in pandas

To help you get started, we’ve selected a few pandas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github openeemeter / eemeter / tests / test_caltrack_usage_per_day.py View on Github external
def test_caltrack_sufficiency_criteria_fail_no_gap_and_not_enough_days():
    data_quality = pd.DataFrame(
        {
            "meter_value": [1, 1],
            "temperature_not_null": [1, 5],
            "temperature_null": [0, 5],
            "start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"),
        }
    ).set_index("start")
    requested_start = pd.Timestamp("2016-01-02").tz_localize("UTC")
    requested_end = pd.Timestamp("2016-01-04").tz_localize("UTC")
    data_sufficiency = caltrack_sufficiency_criteria(
        data_quality,
        requested_start,
        requested_end,
        num_days=3,
        min_fraction_daily_coverage=0.9,
        min_fraction_hourly_temperature_coverage_per_period=0.9,
    )
    assert data_sufficiency.status == "FAIL"
    assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria")
    assert len(data_sufficiency.warnings) == 4

    warning0 = data_sufficiency.warnings[0]
    assert warning0.qualified_name == (
        "eemeter.caltrack_sufficiency_criteria.incorrect_number_of_total_days"
github foolcage / fooltrader / fooltrader / api / fundamental.py View on Github external
# 归属于少数股东的综合收益总额
        attributableToMinorityShareholders = lines[30].split()[1:-1]

        result_list = []
        for idx, _ in enumerate(reportDate):
            if start_date:
                if pd.Timestamp(reportDate[idx]) < pd.Timestamp(start_date):
                    continue

            if report_period and not is_same_date(report_period, reportDate[idx]):
                continue

            reportEventDate = get_report_event_date(security_item, report_period=reportDate[idx])

            # use report_event_date to filter the reportEventDate before it for not getting future data
            if report_event_date and pd.Timestamp(report_event_date) < pd.Timestamp(reportEventDate):
                continue

            the_json = {
                "id": '{}_{}'.format(security_item["id"], reportDate[idx]),
                "reportPeriod": to_time_str(reportDate[idx]),
                "timestamp": to_time_str(reportEventDate),
                "reportEventDate": to_time_str(reportEventDate),
                "securityId": security_item["id"],
                "code": security_item["code"],
                # /*营业总收入*/
                # 营业收入
                "operatingRevenue": to_float(operatingRevenue[idx]),
                # /*营业总成本*/
                "operatingTotalCosts": to_float(operatingTotalCosts[idx]),
                # 营业成本
                "operatingCosts": to_float(operatingCosts[idx]),
github rsheftel / pandas_market_calendars / pandas_market_calendars / holidays_us.py View on Github external
# http://www.tradingtheodds.com/nyse-full-day-closings/
USMemorialDay1964to1969 = Holiday(
    'Memorial Day',
    month=5,
    day=30,
    start_date=Timestamp('1964-01-01'),
    end_date=Timestamp('1969-12-31'),
    observance=nearest_workday,
)
USMemorialDay = Holiday(
    # NOTE: The definition for Memorial Day is incorrect as of pandas 0.16.0.
    # See https://github.com/pydata/pandas/issues/9760.
    'Memorial Day',
    month=5,
    day=25,
    start_date=Timestamp('1971-01-01'),
    offset=DateOffset(weekday=MO(1)),
)
# http://www.tradingtheodds.com/nyse-full-day-closings/
USIndependenceDayBefore1954 = Holiday(
    'July 4th',
    month=7,
    day=4,
    end_date=Timestamp('1953-12-31'),
    observance=sunday_to_monday,
)
USIndependenceDay = Holiday(
    'July 4th',
    month=7,
    day=4,
    start_date=Timestamp('1954-01-01'),
    observance=nearest_workday,
github quantopian / trading_calendars / trading_calendars / exchange_calendar_xhkg.py View on Github external
Regularly-Observed Early Closes:
    - Lunar New Year's Eve
    - Christmas Eve
    - New Year's Eve


    Additional Irregularities:
    - Closes frequently for severe weather.
    """
    name = 'XHKG'
    tz = timezone('Asia/Hong_Kong')

    open_times = (
        (None, time(10, 1)),
        (pd.Timestamp('2011-03-07'), time(9, 31)),
    )
    close_times = (
        (None, time(16)),
    )
    regular_early_close_times = (
        (None, time(12, 30)),
        (pd.Timestamp('2011-03-07'), time(12, 00)),
    )

    def __init__(self, *args, **kwargs):
        super(XHKGExchangeCalendar, self).__init__(*args, **kwargs)

        lunisolar_holidays = (
            chinese_buddhas_birthday_dates,
            chinese_lunar_new_year_dates,
            day_after_mid_autumn_festival_dates,
github sinhrks / daskperiment / daskperiment / core / metric / base.py View on Github external
def save(self, metric_key, trial_id, epoch, value):
        """
        Save metrics to MetricManager
        """
        metric_key = validate_identifier(metric_key, keyname='Metric name')
        record = dict(Epoch=epoch, Value=value,
                      Timestamp=pd.Timestamp.now())
        return self._save(metric_key=metric_key,
                          trial_id=trial_id, record=record)
github tmrowco / electricitymap-contrib / parsers / HOPS.py View on Github external
"""
    r = session or requests.session()

    dt = datetime.strptime(feed_date, '%Y-%m-%d %H:%M:%S')
    # Get all available files
    dates_url = "https://files.hrote.hr/files/EKO_BG/FORECAST/SOLAR/FTP/TEST_DRIVE/dates.json"
    response = r.get(dates_url)
    dates = response.json()
    # Use latest file to get more up to date estimation
    solar_url = 'https://files.hrote.hr/files/EKO_BG/FORECAST/SOLAR/FTP/TEST_DRIVE/{0}'.format(dates[-1]["Filename"])
    response = r.get(solar_url)
    obj = response.json()

    df = pd.DataFrame.from_dict(obj['FullPower']).set_index('Timestamp')
    df.index = pd.to_datetime(df.index) # cast strings to datetimes
    solar_production_dt = pd.Timestamp(feed_date, tz='Europe/Zagreb').floor('1h')
    try:
        solar = df['Value'].loc[solar_production_dt]
        # Converting to MW
        solar *= 0.001
    except KeyError:
        logger.warning("No value for Solar power production on {0}".format(solar_production_dt))
        solar = None

    return solar
github rsheftel / pandas_market_calendars / pandas_market_calendars / holidays_cn.py View on Github external
1984: Timestamp('1984-04-04'),
    1985: Timestamp('1985-04-05'),
    1986: Timestamp('1986-04-05'),
    1987: Timestamp('1987-04-05'),
    1988: Timestamp('1988-04-04'),
    1989: Timestamp('1989-04-05'),
    1990: Timestamp('1990-04-05'),
    1991: Timestamp('1991-04-05'),
    1992: Timestamp('1992-04-04'),
    1993: Timestamp('1993-04-05'),
    1994: Timestamp('1994-04-05'),
    1995: Timestamp('1995-04-05'),
    1996: Timestamp('1996-04-04'),
    1997: Timestamp('1997-04-05'),
    1998: Timestamp('1998-04-05'),
    1999: Timestamp('1999-04-05'),
    2000: Timestamp('2000-04-04'),
    2001: Timestamp('2001-04-05'),
    2002: Timestamp('2002-04-05'),
    2003: Timestamp('2003-04-05'),
    2004: Timestamp('2004-04-04'),
    2005: Timestamp('2005-04-05'),
    2006: Timestamp('2006-04-05'),
    2007: Timestamp('2007-04-05'),
    2008: Timestamp('2008-04-04'),
    2009: Timestamp('2009-04-04'),
    2010: Timestamp('2010-04-05'),
    2011: Timestamp('2011-04-05'),
    2012: Timestamp('2012-04-04'),
    2013: Timestamp('2013-04-04'),
    2014: Timestamp('2014-04-05'),
    2015: Timestamp('2015-04-05'),
github rsheftel / pandas_market_calendars / pandas_market_calendars / holidays_us.py View on Github external
observance=sunday_to_monday,
)
USWashingtonsBirthDayBefore1964 = Holiday(
    'Washington''s Birthday',
    month=2,
    day=22,
    start_date=Timestamp('1880-01-01'),
    end_date=Timestamp('1963-12-31'),
    observance=sunday_to_monday,
)
USWashingtonsBirthDay1964to1970 = Holiday(
    'Washington''s Birthday',
    month=2,
    day=22,
    start_date=Timestamp('1964-01-01'),
    end_date=Timestamp('1970-12-31'),
    observance=nearest_workday,
)
USPresidentsDay = Holiday('President''s Day',
                          start_date=Timestamp('1971-01-01'),
                          month=2, day=1,
                          offset=DateOffset(weekday=MO(3)))
# http://www.tradingtheodds.com/nyse-full-day-closings/
USThanksgivingDayBefore1939 = Holiday('Thanksgiving Before 1939',
                                      start_date=Timestamp('1864-01-01'),
                                      end_date=Timestamp('1938-12-31'),
                                      month=11, day=30,
                                      offset=DateOffset(weekday=TH(-1)))
# http://www.tradingtheodds.com/nyse-full-day-closings/
USThanksgivingDay1939to1941 = Holiday('Thanksgiving 1939 to 1941',
                                      start_date=Timestamp('1939-01-01'),
                                      end_date=Timestamp('1941-12-31'),
github pastas / pastas / pastas / model.py View on Github external
ts_tmin = self.oseries.series.index.min()
        # Get tmin from the stressmodels
        elif use_stresses:
            ts_tmin = pd.Timestamp.max
            for stressmodel in self.stressmodels.values():
                if stressmodel.tmin < ts_tmin:
                    ts_tmin = stressmodel.tmin
        # Get tmin and tmax from user provided values
        else:
            ts_tmin = pd.Timestamp(tmin)

        # Set tmin properly
        if tmin is not None and use_oseries:
            tmin = max(pd.Timestamp(tmin), ts_tmin)
        elif tmin is not None:
            tmin = pd.Timestamp(tmin)
        else:
            tmin = ts_tmin

        # adjust tmin and tmax so that the time-offset is equal to the stressmodels.
        if freq is None:
            freq = self.settings["freq"]
        tmin = tmin.floor(freq) + self.settings["time_offset"]

        # assert tmax > tmin, \
        #     self.logger.error('Error: Specified tmax not larger than '
        #                       'specified tmin')
        # if use_oseries:
        #     assert self.oseries.series.loc[tmin: tmax].size > 0, \
        #         self.logger.error(
        #             'Error: no observations between tmin and tmax')
github bluesky / databroker / dataportal / muxer / data_muxer.py View on Github external
def reference_time(self, val):
        self._reference_time = pd.Timestamp(val, unit='s')