How to use matplotlib - 10 common examples

To help you get started, we’ve selected a few matplotlib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pkorus / neural-imaging / diff_nip.py View on Github external
# Develop images
    sample_ya = model_a.process(sample_x).numpy()
    sample_yb = model_b.process(sample_x).numpy()

    if patch_size > 0:
        print('Cropping a {p}x{p} patch from the middle'.format(p=patch_size))
        xx = (sample_x.shape[2] - patch_size // 2) // 2
        yy = (sample_x.shape[1] - patch_size // 2) // 2
        sample_x = sample_x[:, yy:yy+patch_size, xx:xx+patch_size, :]
        sample_y = sample_y[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
        sample_ya = sample_ya[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
        sample_yb = sample_yb[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]

    # Plot images
    fig = imdiff.compare_ab_ref(sample_y, sample_ya, sample_yb, fig=plt.figure(), extras=extras)

    if output_dir is not None:
        from tikzplotlib import save as tikz_save
        dcomp = [x for x in fsutil.split(model_b_dirname) if re.match('(ln-.*|[0-9]{3})', x)]
        tikz_save('{}/examples_{}_{}_{}_{}.tex'.format(output_dir, camera, image, model_a_dirname, model_b_dirname), figureheight='8cm', figurewidth='8cm', strict=False)
    else:
        fig.tight_layout()
        fig.show(fig)

    fig.suptitle('{}, A={}, B={}'.format(image, model_a.model_code, model_b.model_code))
    plt.show()
    plt.close(fig)
github gracecxj / Indoor-Positioning / main.py View on Github external
# error line
            ax.plot([grid_dict[pre_ind] % X_GRID_NUM, grid_dict[tar_ind] % X_GRID_NUM],
                     [grid_dict[pre_ind] // X_GRID_NUM, grid_dict[tar_ind] // X_GRID_NUM], label='error line' if i == 0 else "", color='r', linewidth=0.5)
            # prediction point
            ax.scatter(grid_dict[pre_ind] % X_GRID_NUM, grid_dict[pre_ind] // X_GRID_NUM, label='prediction' if i == 0 else "", color='b', marker='.')
            # target point
            ax.scatter(grid_dict[tar_ind] % X_GRID_NUM, grid_dict[tar_ind] // X_GRID_NUM, label='target' if i == 0 else "", color='c', marker='.')

        ax.legend()
        # handles, labels = plt.gca().get_legend_handles_labels()
        # by_label = OrderedDict(zip(labels, handles))
        # plt.legend(by_label.values(), by_label.keys())

        plt.title("Errors of classification{}".format(suffix), y=1.08)
        plt.show()

        # save error line fig
        if baseline:
            fig.savefig('./graph_output/errors_visualization_1_1.png')  # calssification [200,200,200]
        else:
            fig.savefig('./graph_output/errors_visualization_1.png')  # classification [64,32,16]


    # output 2 values (regression)
    else:

        # 设置x,y主坐标轴
        my_x_ticks = np.arange(-40, 40, 10)
        my_y_ticks = np.arange(-30, 30, 10)
        ax.set_xticks(my_x_ticks, minor=False)
        ax.set_yticks(my_y_ticks, minor=False)
github muneebalam / scrapenhl2 / scrapenhl2 / plot / game_timeline.py View on Github external
if pd.isnull(cf_at_time_max):
                    cf_at_time_max = cf[team][cf[team].Time == end].CumCF.max()
                if i == 0:
                    ax2.axvspan(start, end, ymin=cf_at_time_min / ymax,
                                ymax=cf_at_time_max / ymax, alpha=0.5, facecolor=colors_to_use[team],
                                label='{0:s} {1:s}'.format(team, pptype))
                else:
                    ax2.axvspan(start, end, ymin=cf_at_time_min / ymax,
                                ymax=cf_at_time_max / ymax, alpha=0.5, facecolor=colors[team])
                ax2.axvspan(start, end + 1, ymin=0, ymax=0.05, alpha=0.5, facecolor=colors_to_use[team])

    # Set limits
    ax2.set_xlim(0, cf[hname].Time.max())
    ax2.set_ylim(0, ymax)
    ax.set_ylabel('Cumulative CF')
    plt.legend(loc=2, framealpha=0.5, fontsize=8)

    # Ticks every 10 min on bottom axis; none on top axis
    ax.set_xlim(0, cf[hname].Time.max() / 60)
    ax.set_xticks(range(0, cf[hname].Time.max() // 60 + 1, 10))
    ax.set_xlabel('Time elapsed in game (min)')
    ax2.set_xticks([])

    # Set title
    plt.title(_get_corsi_timeline_title(season, game))

    plt.gcf().canvas.set_window_title('{0:d} {1:d} TL.png'.format(season, game))

    if save_file is None:
        plt.show()
    elif save_file == 'fig':
        return plt.gcf()
github sassoftware / python-dlpy / dl_api / images.py View on Github external
if nimages > ncol:
            nrow = nimages // ncol + 1
        else:
            nrow = 1
            ncol = nimages
        if figsize is None:
            figsize = (16, 16 // ncol * nrow)
        fig = plt.figure(figsize=figsize)

        for i in range(nimages):
            image = temp_tbl['Images']['Image'][i]
            label = temp_tbl['Images']['Label'][i]
            ax = fig.add_subplot(nrow, ncol, i + 1)
            ax.set_title('{}'.format(label))
            plt.imshow(image)
            plt.xticks([]), plt.yticks([])
github rohanchandra30 / TrackNPred / model / Detection / Mask / build / lib / mrcnn / visualize.py View on Github external
"""Display the given set of images, optionally with titles.
    images: list or array of image tensors in HWC format.
    titles: optional. A list of titles to display with each image.
    cols: number of images per row
    cmap: Optional. Color map to use. For example, "Blues".
    norm: Optional. A Normalize instance to map values to colors.
    interpolation: Optional. Image interporlation to use for display.
    """
    titles = titles if titles is not None else [""] * len(images)
    rows = len(images) // cols + 1
    plt.figure(figsize=(14, 14 * rows // cols))
    i = 1
    for image, title in zip(images, titles):
        plt.subplot(rows, cols, i)
        plt.title(title, fontsize=9)
        plt.axis('off')
        plt.imshow(image.astype(np.uint8), cmap=cmap,
                   norm=norm, interpolation=interpolation)
        i += 1
    plt.show()
github columbia / fairtest / src / fairtest / modules / bug_report / report.py View on Github external
for (key, group) in grouped]
                min_key_diff = min([keys[_ + 1]-keys[_]
                                    for _ in xrange(len(keys)-1)])

                plt.boxplot(groups, positions=keys,
                            widths=(1.0*min_key_diff)/2, sym='')

                plt.rcParams.update({'font.size': 22})
                if namer.sens in namer.encoders:
                    ax = plt.gca()
                    ax.set_xticklabels(namer.get_sens_feature_vals(
                        len(data[data.columns[1]].unique())))
                else:
                    plt.xlim(np.min(sens) - 0.4*np.std(sens),
                             np.max(sens) + 0.4*np.std(sens))
                    plt.ylim(np.min(out) - 0.4*np.std(out),
                             np.max(out) + 0.4*np.std(out))

                plt.xlabel(data.columns[1])
                plt.ylabel(data.columns[0])
                plt.show()

            (effect_low, effect_high, p_val) = context_stats[i+1]
            print >> output_stream, \
                'p-value = {:.2e} ; {} = [{:.4f}, {:.4f}]'.\
                format(p_val, 'CORR', effect_low, effect_high)
            print >> output_stream

        context_stats = context_stats[0]

    # print p-value and confidence interval of correlation
    (effect_low, effect_high, p_val) = context_stats
github loliverhennigh / Phy-Net / test / generate_em_error_plot.py View on Github external
# run network 
        for step in tqdm(xrange(FLAGS.test_length)):
          # network step
          state_feed_dict, boundary_feed_dict = feed_dict(1, shape, FLAGS.lattice_size, sim, run+step+0)
          fd = {state:state_feed_dict, boundary:boundary_feed_dict, y_1:y_1_g, small_boundary_mul:small_boundary_mul_g, small_boundary_add:small_boundary_add_g}
          mse, y_1_g = sess.run([mean_squared_error, y_2],feed_dict=fd)
          # calc error
          mse_error[sim, step] = mse

    # step count variable for plotting
    x = np.arange(FLAGS.test_length)

    # mse 
    mse_error_mean, mse_error_std = calc_mean_and_std(mse_error)

    plt.figure(figsize = (6,12))
    plt.style.use('seaborn-darkgrid')

    font = {'family' : 'normal',
        'weight' : 'normal',
        'size'   : 16}

    matplotlib.rc('font', **font)

    plt.title(str(shape[0]) + "x" + str(shape[1]) + " EM Simulation", y=1.00, fontsize="x-large")
    plt.errorbar(x, mse_error_mean, yerr=mse_error_std, c='y', capsize=0, lw=1.0)
    plt.xlabel('step', fontsize="x-large")
    plt.ylabel('MSError', fontsize="x-large")
    plt.legend(loc="upper_left")
    plt.savefig("figs/" + str(shape[0]) + "x" + str(shape[1]) + "_2d_em_error_plot.png")
github GeoscienceAustralia / anuga_core / validation_tests / analytical_exact / subcritical_depth_expansion / plot_results.py View on Github external
#v2=(p2_st.y>-1.0)
v2 = arange(len(p2_st.y))

if verbose: print 'Calculate analytical solution'
h,z = analytic_sol(p2_st.x[v2])
qexact = 1.0




#Plot the stages##############################################################
if verbose: print 'Create Stage plot'
pyplot.clf()
pyplot.plot(p2_st.x[v2], p2_st.stage[tid,v2], 'b.-', label='numerical stage') # 0*T/6
pyplot.plot(p2_st.x[v2], h+z,'r-', label='analytical stage')
pyplot.plot(p2_st.x[v2], z,'k-', label='bed elevation')
pyplot.xlim((5,20))
pyplot.title('Stage at time = %s secs'% p2_st.time[tid])
##pyplot.ylim(-5.0,5.0)
pyplot.legend(loc='best')
pyplot.xlabel('Xposition')
pyplot.ylabel('Stage')
pyplot.savefig('stage_plot.png')


#Plot the momentums##########################################################
if verbose: print 'Create Momentum plot'
pyplot.clf()
pyplot.plot(p2_st.x[v2], p2_st.xmom[tid,v2], 'b.-', label='numerical') # 0*T/6
pyplot.plot(p2_st.x[v2], qexact*ones(len(p2_st.x[v2])),'r-', label='analytical')
pyplot.xlim((5,20))
pyplot.title('Xmomentum at time = %s secs'% p2_st.time[tid])
github damonge / CoLoRe / test_files / mk_files.py View on Github external
bzarr=np.ones_like(zarr)
bzarr2=2*np.ones_like(zarr)
tzarr=5.5919E-2+2.3242E-1*zarr-2.4136E-2*zarr**2.
norm=ngal/(4*np.pi*(180/np.pi)**2*np.sum(nzarr)*(zf-z0)/nz)
nzarr*=norm
norm2=ngal2/(4*np.pi*(180/np.pi)**2*np.sum(nzarr2)*(zf-z0)/nz)
nzarr2*=norm2

np.savetxt("Nz_test.txt",np.transpose([zarr,nzarr]))
np.savetxt("Nz2_test.txt",np.transpose([zarr,nzarr2]))
np.savetxt("Tz_test.txt",np.transpose([zarr,tzarr]))
np.savetxt("Bz_test.txt",np.transpose([zarr,bzarr]))
np.savetxt("Bz2_test.txt",np.transpose([zarr,bzarr2]))
np.savetxt("nuTable.txt",np.transpose([nu0_arr,nuf_arr]))

plt.plot(zarr,nzarr); plt.plot(zarr,nzarr2); plt.show()
plt.plot(zarr,bzarr); plt.show()
plt.plot(zarr,tzarr); plt.show()
github slinderman / pyglm / test / test_single_neuron_vb.py View on Github external
def test_gibbs_update_synapses():
    """
    Test the mean field updates for synapses
    """
    population = create_simple_population(N=5, T=10000)
    neuron = population.neuron_models[0]
    synapse = neuron.synapse_models[0]
    data = neuron.data_list[0]

    plt.ion()
    plt.figure()
    plt.plot(data.psi, '-b')
    plt.plot(np.nonzero(data.counts)[0], data.counts[data.counts>0], 'ko')
    psi = plt.plot(data.psi, '-r')
    plt.show()


    A_true = neuron.An.copy()
    print "A_true: ", neuron.An
    print "W_true: ", neuron.weights
    print "b_true: ", neuron.bias

    # Initialize to a random connections
    neuron.An = np.random.rand(5) < 0.5

    print "--" * 20

    raw_input("Press enter to continue...")

    N_iter = 1000