Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Develop images
sample_ya = model_a.process(sample_x).numpy()
sample_yb = model_b.process(sample_x).numpy()
if patch_size > 0:
print('Cropping a {p}x{p} patch from the middle'.format(p=patch_size))
xx = (sample_x.shape[2] - patch_size // 2) // 2
yy = (sample_x.shape[1] - patch_size // 2) // 2
sample_x = sample_x[:, yy:yy+patch_size, xx:xx+patch_size, :]
sample_y = sample_y[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
sample_ya = sample_ya[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
sample_yb = sample_yb[:, 2*yy:2*(yy+patch_size), 2*xx:2*(xx+patch_size), :]
# Plot images
fig = imdiff.compare_ab_ref(sample_y, sample_ya, sample_yb, fig=plt.figure(), extras=extras)
if output_dir is not None:
from tikzplotlib import save as tikz_save
dcomp = [x for x in fsutil.split(model_b_dirname) if re.match('(ln-.*|[0-9]{3})', x)]
tikz_save('{}/examples_{}_{}_{}_{}.tex'.format(output_dir, camera, image, model_a_dirname, model_b_dirname), figureheight='8cm', figurewidth='8cm', strict=False)
else:
fig.tight_layout()
fig.show(fig)
fig.suptitle('{}, A={}, B={}'.format(image, model_a.model_code, model_b.model_code))
plt.show()
plt.close(fig)
# error line
ax.plot([grid_dict[pre_ind] % X_GRID_NUM, grid_dict[tar_ind] % X_GRID_NUM],
[grid_dict[pre_ind] // X_GRID_NUM, grid_dict[tar_ind] // X_GRID_NUM], label='error line' if i == 0 else "", color='r', linewidth=0.5)
# prediction point
ax.scatter(grid_dict[pre_ind] % X_GRID_NUM, grid_dict[pre_ind] // X_GRID_NUM, label='prediction' if i == 0 else "", color='b', marker='.')
# target point
ax.scatter(grid_dict[tar_ind] % X_GRID_NUM, grid_dict[tar_ind] // X_GRID_NUM, label='target' if i == 0 else "", color='c', marker='.')
ax.legend()
# handles, labels = plt.gca().get_legend_handles_labels()
# by_label = OrderedDict(zip(labels, handles))
# plt.legend(by_label.values(), by_label.keys())
plt.title("Errors of classification{}".format(suffix), y=1.08)
plt.show()
# save error line fig
if baseline:
fig.savefig('./graph_output/errors_visualization_1_1.png') # calssification [200,200,200]
else:
fig.savefig('./graph_output/errors_visualization_1.png') # classification [64,32,16]
# output 2 values (regression)
else:
# 设置x,y主坐标轴
my_x_ticks = np.arange(-40, 40, 10)
my_y_ticks = np.arange(-30, 30, 10)
ax.set_xticks(my_x_ticks, minor=False)
ax.set_yticks(my_y_ticks, minor=False)
if pd.isnull(cf_at_time_max):
cf_at_time_max = cf[team][cf[team].Time == end].CumCF.max()
if i == 0:
ax2.axvspan(start, end, ymin=cf_at_time_min / ymax,
ymax=cf_at_time_max / ymax, alpha=0.5, facecolor=colors_to_use[team],
label='{0:s} {1:s}'.format(team, pptype))
else:
ax2.axvspan(start, end, ymin=cf_at_time_min / ymax,
ymax=cf_at_time_max / ymax, alpha=0.5, facecolor=colors[team])
ax2.axvspan(start, end + 1, ymin=0, ymax=0.05, alpha=0.5, facecolor=colors_to_use[team])
# Set limits
ax2.set_xlim(0, cf[hname].Time.max())
ax2.set_ylim(0, ymax)
ax.set_ylabel('Cumulative CF')
plt.legend(loc=2, framealpha=0.5, fontsize=8)
# Ticks every 10 min on bottom axis; none on top axis
ax.set_xlim(0, cf[hname].Time.max() / 60)
ax.set_xticks(range(0, cf[hname].Time.max() // 60 + 1, 10))
ax.set_xlabel('Time elapsed in game (min)')
ax2.set_xticks([])
# Set title
plt.title(_get_corsi_timeline_title(season, game))
plt.gcf().canvas.set_window_title('{0:d} {1:d} TL.png'.format(season, game))
if save_file is None:
plt.show()
elif save_file == 'fig':
return plt.gcf()
if nimages > ncol:
nrow = nimages // ncol + 1
else:
nrow = 1
ncol = nimages
if figsize is None:
figsize = (16, 16 // ncol * nrow)
fig = plt.figure(figsize=figsize)
for i in range(nimages):
image = temp_tbl['Images']['Image'][i]
label = temp_tbl['Images']['Label'][i]
ax = fig.add_subplot(nrow, ncol, i + 1)
ax.set_title('{}'.format(label))
plt.imshow(image)
plt.xticks([]), plt.yticks([])
"""Display the given set of images, optionally with titles.
images: list or array of image tensors in HWC format.
titles: optional. A list of titles to display with each image.
cols: number of images per row
cmap: Optional. Color map to use. For example, "Blues".
norm: Optional. A Normalize instance to map values to colors.
interpolation: Optional. Image interporlation to use for display.
"""
titles = titles if titles is not None else [""] * len(images)
rows = len(images) // cols + 1
plt.figure(figsize=(14, 14 * rows // cols))
i = 1
for image, title in zip(images, titles):
plt.subplot(rows, cols, i)
plt.title(title, fontsize=9)
plt.axis('off')
plt.imshow(image.astype(np.uint8), cmap=cmap,
norm=norm, interpolation=interpolation)
i += 1
plt.show()
for (key, group) in grouped]
min_key_diff = min([keys[_ + 1]-keys[_]
for _ in xrange(len(keys)-1)])
plt.boxplot(groups, positions=keys,
widths=(1.0*min_key_diff)/2, sym='')
plt.rcParams.update({'font.size': 22})
if namer.sens in namer.encoders:
ax = plt.gca()
ax.set_xticklabels(namer.get_sens_feature_vals(
len(data[data.columns[1]].unique())))
else:
plt.xlim(np.min(sens) - 0.4*np.std(sens),
np.max(sens) + 0.4*np.std(sens))
plt.ylim(np.min(out) - 0.4*np.std(out),
np.max(out) + 0.4*np.std(out))
plt.xlabel(data.columns[1])
plt.ylabel(data.columns[0])
plt.show()
(effect_low, effect_high, p_val) = context_stats[i+1]
print >> output_stream, \
'p-value = {:.2e} ; {} = [{:.4f}, {:.4f}]'.\
format(p_val, 'CORR', effect_low, effect_high)
print >> output_stream
context_stats = context_stats[0]
# print p-value and confidence interval of correlation
(effect_low, effect_high, p_val) = context_stats
# run network
for step in tqdm(xrange(FLAGS.test_length)):
# network step
state_feed_dict, boundary_feed_dict = feed_dict(1, shape, FLAGS.lattice_size, sim, run+step+0)
fd = {state:state_feed_dict, boundary:boundary_feed_dict, y_1:y_1_g, small_boundary_mul:small_boundary_mul_g, small_boundary_add:small_boundary_add_g}
mse, y_1_g = sess.run([mean_squared_error, y_2],feed_dict=fd)
# calc error
mse_error[sim, step] = mse
# step count variable for plotting
x = np.arange(FLAGS.test_length)
# mse
mse_error_mean, mse_error_std = calc_mean_and_std(mse_error)
plt.figure(figsize = (6,12))
plt.style.use('seaborn-darkgrid')
font = {'family' : 'normal',
'weight' : 'normal',
'size' : 16}
matplotlib.rc('font', **font)
plt.title(str(shape[0]) + "x" + str(shape[1]) + " EM Simulation", y=1.00, fontsize="x-large")
plt.errorbar(x, mse_error_mean, yerr=mse_error_std, c='y', capsize=0, lw=1.0)
plt.xlabel('step', fontsize="x-large")
plt.ylabel('MSError', fontsize="x-large")
plt.legend(loc="upper_left")
plt.savefig("figs/" + str(shape[0]) + "x" + str(shape[1]) + "_2d_em_error_plot.png")
#v2=(p2_st.y>-1.0)
v2 = arange(len(p2_st.y))
if verbose: print 'Calculate analytical solution'
h,z = analytic_sol(p2_st.x[v2])
qexact = 1.0
#Plot the stages##############################################################
if verbose: print 'Create Stage plot'
pyplot.clf()
pyplot.plot(p2_st.x[v2], p2_st.stage[tid,v2], 'b.-', label='numerical stage') # 0*T/6
pyplot.plot(p2_st.x[v2], h+z,'r-', label='analytical stage')
pyplot.plot(p2_st.x[v2], z,'k-', label='bed elevation')
pyplot.xlim((5,20))
pyplot.title('Stage at time = %s secs'% p2_st.time[tid])
##pyplot.ylim(-5.0,5.0)
pyplot.legend(loc='best')
pyplot.xlabel('Xposition')
pyplot.ylabel('Stage')
pyplot.savefig('stage_plot.png')
#Plot the momentums##########################################################
if verbose: print 'Create Momentum plot'
pyplot.clf()
pyplot.plot(p2_st.x[v2], p2_st.xmom[tid,v2], 'b.-', label='numerical') # 0*T/6
pyplot.plot(p2_st.x[v2], qexact*ones(len(p2_st.x[v2])),'r-', label='analytical')
pyplot.xlim((5,20))
pyplot.title('Xmomentum at time = %s secs'% p2_st.time[tid])
bzarr=np.ones_like(zarr)
bzarr2=2*np.ones_like(zarr)
tzarr=5.5919E-2+2.3242E-1*zarr-2.4136E-2*zarr**2.
norm=ngal/(4*np.pi*(180/np.pi)**2*np.sum(nzarr)*(zf-z0)/nz)
nzarr*=norm
norm2=ngal2/(4*np.pi*(180/np.pi)**2*np.sum(nzarr2)*(zf-z0)/nz)
nzarr2*=norm2
np.savetxt("Nz_test.txt",np.transpose([zarr,nzarr]))
np.savetxt("Nz2_test.txt",np.transpose([zarr,nzarr2]))
np.savetxt("Tz_test.txt",np.transpose([zarr,tzarr]))
np.savetxt("Bz_test.txt",np.transpose([zarr,bzarr]))
np.savetxt("Bz2_test.txt",np.transpose([zarr,bzarr2]))
np.savetxt("nuTable.txt",np.transpose([nu0_arr,nuf_arr]))
plt.plot(zarr,nzarr); plt.plot(zarr,nzarr2); plt.show()
plt.plot(zarr,bzarr); plt.show()
plt.plot(zarr,tzarr); plt.show()
def test_gibbs_update_synapses():
"""
Test the mean field updates for synapses
"""
population = create_simple_population(N=5, T=10000)
neuron = population.neuron_models[0]
synapse = neuron.synapse_models[0]
data = neuron.data_list[0]
plt.ion()
plt.figure()
plt.plot(data.psi, '-b')
plt.plot(np.nonzero(data.counts)[0], data.counts[data.counts>0], 'ko')
psi = plt.plot(data.psi, '-r')
plt.show()
A_true = neuron.An.copy()
print "A_true: ", neuron.An
print "W_true: ", neuron.weights
print "b_true: ", neuron.bias
# Initialize to a random connections
neuron.An = np.random.rand(5) < 0.5
print "--" * 20
raw_input("Press enter to continue...")
N_iter = 1000