Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
savefig("scatterdata3D.png", format='png')
plt.close()
#
# Compare to ground truth
#
print 'trainsize ' + str(trainsize)
Ytruth = Y[-trainsize:]
print 'Ytruth.shape ' + str(Ytruth.shape)
Xtest = dataX[-trainsize:,:]
print 'Xtest.shape ' + str(Xtest.shape)
Ytest = learner.query(Xtest) # to check every point
print 'Ytest.shape ' + str(Ytest.shape)
plt.clf()
plt.scatter(Ytruth,Ytest,edgecolors='none')
plt.xlim(-1.2,1.2) # set x scale
plt.ylim(-1.2,1.2) # set y scale
plt.xlabel('Ground Truth')
plt.ylabel('Estimated')
savefig("scatterdata.png", format='png')
print corrcoef(Ytruth,Ytest)
# figure number
fignum = 1
# fit the model
for kernel in ('linear', 'poly', 'rbf'):
clf = svm.SVC(kernel=kernel, gamma=2)
clf.fit(X, Y)
# plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10, edgecolors='k')
plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,
edgecolors='k')
plt.axis('tight')
x_min = -3
x_max = 3
y_min = -3
y_max = 3
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators = 500, random_state = 0)
regressor= regressor.fit(x,y)
regressor2 = RandomForestRegressor(n_estimators = 10, random_state = 0) # trey to show diff in number of trees
regressor2 = regressor2.fit(x,y)
# making prediction
y_pred = regressor.predict(6.5)
# visualize the fitted model and our data
# we can see average values calculated by Random Forest Regression.
# Each step is one section with its information entropy.
x_grid = np.arange(min(x),max(x),0.01)
x_grid = x_grid.reshape(-1,1)
plt.scatter(x,y, color ='red', alpha=0.6)
plt.scatter(6.5,y_pred,color = 'blue', marker='D',alpha = 0.5)
plt.plot(x_grid,regressor.predict(x_grid),color='green' , alpha= 0.7)
plt.plot(x_grid,regressor2.predict(x_grid),color='purple', alpha = 0.6)
plt.title('Level vs Salary (train data) using Decision Tree Regression')
plt.xlabel('Level')
plt.ylabel('Salary')
plt.legend()
plt.grid()
plt.show()
Y,
s=size,
c=color,
alpha=0.7,
linewidth=1.5,
edgecolors='black',
cmap='plasma_r')
cbar = plt.colorbar(sc, shrink=0.5)
cbar.set_label(label)
# legend
plt.scatter(0.3, 0.9, s=16, c='white', linewidth=1.5, edgecolors='black')
plt.scatter(0.4, 0.9, s=25, c='white', linewidth=1.5, edgecolors='black')
plt.scatter(0.5, 0.9, s=36, c='white', linewidth=1.5, edgecolors='black')
plt.scatter(0.6, 0.9, s=49, c='white', linewidth=1.5, edgecolors='black')
plt.scatter(0.7, 0.9, s=64, c='white', linewidth=1.5, edgecolors='black')
plt.scatter(0.8, 0.9, s=81, c='white', linewidth=1.5, edgecolors='black')
plt.text(0.3, .95, '4', fontsize=10)
plt.text(0.4, .95, '5', fontsize=10)
plt.text(0.5, .95, '6', fontsize=10)
plt.text(0.6, .95, '7', fontsize=10)
plt.text(0.7, .95, '8', fontsize=10)
plt.text(0.8, .95, '9', fontsize=10)
plt.text(0.85, .95, 'Mw', fontsize=10)
return fig
plt.scatter(x=X[y==c, 0],
y=y_data,
alpha=0.8,
c=cmap(c),
marker=next(marker_gen),
label=c)
if legend:
plt.legend(loc=legend, fancybox=True, framealpha=0.5)
print X
if plot_testdata:
if dim == '2d':
plt.scatter(X[:,0], X[:,1], c='', alpha=1.0, linewidth=1, marker='o', s=80)
else:
plt.scatter(X, [0 for i in X], c='', alpha=1.0, linewidth=1, marker='o', s=80)
plt.xlim((3, dims[0]-7))
plt.axis('off')
day = [mlines.Line2D([], [], color=cl[i], label='Day '+str(i+1)) for i in range(N)]
plt.legend(handles=day, loc=3)
dist_pair = [pair[1]-pair[0] for pair in pairs]
ax2 = plt.subplot2grid((3, 3), (0, 2))
plt.scatter(dist_pair,f1_forw,c='r')
plt.scatter(dist_pair,f1_back,c='b')
plt.title('F_1 score, union vs direct matching')
day = [mlines.Line2D([], [], color='r', label='Forward')] + [mlines.Line2D([], [], color='b', label='Backward')]
plt.legend(handles=day, loc=1)
plt.ylim((0.975,1.002))
plt.xlabel('Time difference between session (days)')
ax3 = plt.subplot2grid((3, 3), (1, 2))
plt.scatter(ln,f1_fb)
plt.title('F_1 score, forward vs backward')
plt.ylim((0.975, 1))
plt.xlabel('Number of sessions')
plt.tight_layout()
def show_label_points(label):
target_point = make_graph(label)
wx = [x for i, x in enumerate(x_output) if points_labels[i] == label]
wy = [y for i, y in enumerate(y_output) if points_labels[i] == label]
plt.scatter(wx, wy, c='red')
plt.scatter(target_point[0], target_point[1], c='green')
plt.title(label)
plt.savefig(os.path.join(FOLDER_TO_SAVE, label + '.png'), format='png', dpi=1000)
# x = [[i] for i in x]
# y = np.random.rand(n)
# y = [[i] for i in y]
#generate grid of random points within a 1x1 box
X = np.random.rand(n,2)
k = kmeans(X, 20)
print type(X)
counts+=1
#plt.scatter(X[:,0],X[:,1])
plt.scatter(k[0][:,0], k[0][:,1], alpha = opac)
plt.xlim(0,1.)
plt.ylim(0,1.)
opac *= 0.9
plt.show()
print('===>predict by trained KMeans model on 2D dimension with %.2fs'%(time() - t1))
# Put the result into a color plot
t1 = time()
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower')
plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],
marker='x', s=169, linewidths=3,
color='w', zorder=10)
plt.title('K-means clustering on the image dataset (PCA-reduced data)\n'
'Centroids are marked with white cross')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.savefig('kmeans_2d.png')
plt.show()
print('===>draw plot of clusters on 2D dimension with %.2fs, check result at kmeans_2d.png'%(time() - t1))
'data/ASquaredC/dm-cheetah_episode_1998848_options.bin',
]
for j, file in enumerate(files):
plt.figure(figsize=(10, 0.2))
plt.tight_layout()
with open(file, 'rb') as f:
options = pickle.load(f)
options = np.asarray(options)
xs = []
for i in range(4):
xs.append(np.argwhere(options == i).flatten())
for i, x in enumerate(xs):
y = np.ones(len(x))
plt.scatter(x, y, color=colors[i], marker='|')
plt.axis('off')
plt.savefig('%s/options-%d.png' % (FOLDER, j), bbox_inches='tight')