Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
assert len(tup[1]) == len(tup[2])
for i in range(len(tup[1])):
if True or "flip" in y_label or tup[2][i] < 2.5:
list_of_row_dicts.append({title_of_each_graph: tup[0], x_label: tup[1][i], y_label: tup[2][i],
"AllTheSameInCol": "filler"})
else:
print("Excluding a data point for " + y_label)
data_to_plot = pd.DataFrame(list_of_row_dicts)
marker_format_dict = {'alpha': 0.15, 's': 2}
if 'flip' in y_label:
marker_format_dict["s"] = 10
g = sns.lmplot(x=x_label, y=y_label, col=title_of_each_graph, hue="AllTheSameInCol", palette=None,
data = data_to_plot, col_wrap = 2, legend=False,
scatter_kws=marker_format_dict, sharey=False, sharex=False)
print("Saving file to " + filename)
plt.savefig(filename, bbox_inches='tight')
step_size=step_size,
alpha=alpha,
callback=cb,
)
dict_fact.fit(train_imgs)
dict_fact.components_img_.to_filename(join(artifact_dir, 'components.nii.gz'))
fig = plt.figure()
display_maps(fig, dict_fact.components_img_)
plt.savefig(join(artifact_dir, 'components.png'))
fig, ax = plt.subplots(1, 1)
ax.plot(cb.cpu_time, cb.score, marker='o')
_run.info['time'] = cb.cpu_time
_run.info['score'] = cb.score
_run.info['iter'] = cb.iter
plt.savefig(join(artifact_dir, 'score.png'))
plt.grid(True)
del alldf
if outfile:
if outfile.startswith("?"):
if len(mov_stacks) == 1:
outfile = outfile.replace('?', '%s-f%i-m%i-M%s' % (components,
filterid,
mov_stack,
dttname))
else:
outfile = outfile.replace('?', '%s-f%i-M%s' % (components,
filterid,
dttname))
outfile = "timing " + outfile
print("output to:", outfile)
plt.savefig(outfile)
if show:
plt.show()
def to_midi(pred, out_path, velocity=100, threshold=0.4, t_unit=0.02):
midi = pretty_midi.PrettyMIDI()
piano = pretty_midi.Instrument(program=0)
notes = []
pred = np.where(pred>threshold, 1, 0)
pred = merge_channels(pred)
pitch_offset = librosa.note_to_midi("A0")
#print("Transformed shape: ", pred.shape)
plt.imshow(pred.transpose(), origin="lower", aspect=20)
plt.savefig("{}.png".format(out_path), dpi=250)
for i in range(pred.shape[1]):
pp = pred[:, i]
candy = np.where(pp > 0.5)[0]
if len(candy) == 0:
# No pitch present
continue
shift = np.insert(candy, 0, 0)[:-1]
diff = candy - shift
on_idx = np.where(diff>1)[0]
onsets = candy[on_idx]
offsets = shift[on_idx[1:]]
offsets = np.append(offsets, candy[-1])
for ii in range(len(onsets)):
axes[0].set_xlabel("$i$")
label1 = "$\sum_{i}{W_{ij}}$"
label2 = "$c_{j}$"
label3 = "{0}/{1}".format(label1,label2)
xpoints = list(range(len(rowSums)))
# ax = plt.figure().gca()
# ax.xaxis.set_major_locator(MaxNLocator(integer = True))
axes[1].plot(xpoints,rowSums,label = label1)
axes[1].plot(xpoints,hiddenBias,label = label2)
axes[1].plot(xpoints,rowSums/hiddenBias,"r--",label = label3,linewidth = 2)
axes[1].axhline(0,color = "k")
axes[1].set_ylim(-14,14)
axes[1].legend()
axes[1].set_xlabel("$j$")
plt.savefig("Symmetries")
plt.clf()
plt.close()
vbiases = []
hbiases = []
for i in range(len(weights)):
vindex = np.argmax(abs(weights[i]))
vbias = visibleBias[vindex]
hbias = hiddenBias[i]
vbiases.append(vbias)
hbiases.append(hbias)
vbiases = np.array(vbiases)
hbiases = np.array(hbiases)
label1 = "$b_{j}^{Strong}$"
label2 = "$c_{i}$"
dst = (np.dot(self.word_vectors, word_vec)
/ np.linalg.norm(self.word_vectors, axis=1)
/ np.linalg.norm(word_vec))
word_ids = np.argsort(-dst)
# build histogram
n, bins, patches = plt.hist(dst, range=(-1, 1), weights=np.ones_like(dst)/float(len(dst)), facecolor='green', alpha=0.5)
plt.xlabel('Similarity')
plt.ylabel('Probability')
plt.title('Histogram of word similarities for `'+self.inverse_dictionary[word_ids[0]]+'`')
# show or save
if show_hist:
plt.show()
else:
plt.savefig('./similarity_vs_probability.png')
if similar:
return [(self.inverse_dictionary[x], dst[x]) for x in word_ids[:number]
if x in self.inverse_dictionary]
else:
return [(self.inverse_dictionary[x], dst[x]) for x in word_ids[-number:]
if x in self.inverse_dictionary]
def plot_results(train_x, predictions, actual, filename):
plt.figure()
num_train = len(train_x)
plt.plot(list(range(num_train)), train_x, color='b', label='training data')
plt.plot(list(range(num_train, num_train + len(predictions))), predictions, color='r', label='predicted')
plt.plot(list(range(num_train, num_train + len(actual))), actual, color='g', label='test data')
plt.legend()
if filename is not None:
plt.savefig(filename)
else:
plt.show()
def save_as_tikz(out_file, pdf_preview=True):
"""Save TikZ figure using matplotlib2tikz. Optional PDF out."""
tex_file, pdf_file = ['{}.{}'.format(out_file, extension)
for extension in ['tex', 'pdf']]
tikz_save(tex_file,
override_externals = True,
# define these two macros in your .tex document
figureheight = r'\figheight',
figurewidth = r'\figwidth',
tex_relative_path_to_data = '../../fig/',
extra_axis_parameters = {'mystyle'})
if pdf_preview:
plt.savefig(pdf_file, bbox_inches='tight')
create_dataset(artist_folder='artists', save_folder='song_data',
sr=16000, n_mels=128, n_fft=2048,
hop_length=512)
if create_visuals:
# Create spectrogram for a specific song
visualize_spectrogram(
'artists/u2/The_Joshua_Tree/' +
'02-I_Still_Haven_t_Found_What_I_m_Looking_For.mp3',
offset=60, duration=29.12)
# Create spectrogram subplots
create_spectrogram_plots(artist_folder='artists', sr=16000, n_mels=128,
n_fft=2048, hop_length=512)
if save_visuals:
plt.savefig(os.path.join('spectrograms.png'),
bbox_inches="tight")
plt.xlabel('# of epoch')
plt.ylabel('accuracy')
"""
plt.subplot(122)
p1 = plt.plot(valid_precision_idxs1, valid_precision_list1, '.--', color='#6495ED')
p2 = plt.plot(valid_precision_idxs2, valid_precision_list2, '.--', color='#FF6347')
p3 = plt.plot(valid_precision_idxs3, valid_precision_list3, '.--', color='#4EEE94')
plt.legend((p1[0], p2[0], p3[0]), ('lr = 0.01', 'lr = 0.01~0.001', 'lr = 0.01~0.001~0.0005'))
plt.grid(True)
plt.title('cifar10 image classification valid precision')
plt.xlabel('# of epoch')
plt.ylabel('accuracy')
plt.axis([0, 500, 0.7, 0.9])
# plt.show()
plt.savefig('E:\\Github\cifar10-tensorflow\\exps\cifar10-v11\cifar10-v11.png', dpi=72, format='png')