How to use the gtsam.noiseModel_Isotropic function in gtsam

To help you get started, we’ve selected a few gtsam examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github borglab / gtsam / cython / gtsam / examples / VisualISAM2Example.py View on Github external
# Intentionally initialize the variables off from the ground truth
        initial_estimate.insert(X(i), pose.compose(gtsam.Pose3(
            gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))

        # If this is the first iteration, add a prior on the first pose to set the
        # coordinate frame and a prior on the first landmark to set the scale.
        # Also, as iSAM solves incrementally, we must wait until each is observed
        # at least twice before adding it to iSAM.
        if i == 0:
            # Add a prior on pose x0
            pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array(
                [0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))  # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
            graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))

            # Add a prior on landmark l0
            point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
            graph.push_back(gtsam.PriorFactorPoint3(
                L(0), points[0], point_noise))  # add directly to graph

            # Add initial guesses to all observed landmarks
            # Intentionally initialize the variables off from the ground truth
            for j, point in enumerate(points):
                initial_estimate.insert(L(j), gtsam.Point3(
                    point.x()-0.25, point.y()+0.20, point.z()+0.15))
        else:
            # Update iSAM with the new factors
            isam.update(graph, initial_estimate)
            # Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
            # If accuracy is desired at the expense of time, update(*) can be called additional
            # times to perform multiple optimizer iterations every step.
            isam.update()
            current_estimate = isam.calculateEstimate()
github borglab / gtsam / cython / gtsam / examples / SimpleRotation.py View on Github external
The "prior" in this case is the measurement from a sensor,
    with a model of the noise on the measurement.

    The "Key" created here is a label used to associate parts of the
    state (stored in "RotValues") with particular factors.  They require
    an index to allow for lookup, and should be unique.

    In general, creating a factor requires:
    - A key or set of keys labeling the variables that are acted upon
    - A measurement value
    - A measurement model with the correct dimensionality for the factor
    """
    prior = gtsam.Rot2.fromAngle(np.deg2rad(30))
    prior.print_('goal angle')
    model = gtsam.noiseModel_Isotropic.Sigma(dim=1, sigma=np.deg2rad(1))
    key = gtsam.symbol(ord('x'), 1)
    factor = gtsam.PriorFactorRot2(key, prior, model)

    """
    Step 2: Create a graph container and add the factor to it

    Before optimizing, all factors need to be added to a Graph container,
    which provides the necessary top-level functionality for defining a
    system of constraints.

    In this case, there is only one factor, but in a practical scenario,
    many more factors would be added.
    """
    graph = gtsam.NonlinearFactorGraph()
    graph.push_back(factor)
    graph.print_('full graph')
github borglab / gtsam / cython / gtsam / examples / VisualISAMExample.py View on Github external
# Add an initial guess for the current pose
        initial_estimate.insert(symbol('x', i), initial_xi)

        # If this is the first iteration, add a prior on the first pose to set the coordinate frame
        # and a prior on the first landmark to set the scale
        # Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
        # adding it to iSAM.
        if i == 0:
            # Add a prior on pose x0, with 0.3 rad std on roll,pitch,yaw and 0.1m x,y,z
            pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
            factor = PriorFactorPose3(symbol('x', 0), poses[0], pose_noise)
            graph.push_back(factor)

            # Add a prior on landmark l0
            point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
            factor = PriorFactorPoint3(symbol('l', 0), points[0], point_noise)
            graph.push_back(factor)

            # Add initial guesses to all observed landmarks
            noise = np.array([-0.25, 0.20, 0.15])
            for j, point in enumerate(points):
                # Intentionally initialize the variables off from the ground truth
                initial_lj = points[j].vector() + noise
                initial_estimate.insert(symbol('l', j), Point3(initial_lj))
        else:
            # Update iSAM with the new factors
            isam.update(graph, initial_estimate)
            current_estimate = isam.estimate()
            print('*' * 50)
            print('Frame {}:'.format(i))
            current_estimate.print_('Current estimate: ')
github borglab / gtsam / cython / gtsam / examples / ImuFactorExample2.py View on Github external
initialEstimate = gtsam.Values()

    # Add a prior on pose x0. This indirectly specifies where the origin is.
    # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
    noise = gtsam.noiseModel_Diagonal.Sigmas(
        np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
    newgraph.push_back(gtsam.PriorFactorPose3(X(0), pose_0, noise))

    # Add imu priors
    biasKey = gtsam.symbol(ord('b'), 0)
    biasnoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
    biasprior = gtsam.PriorFactorConstantBias(biasKey, gtsam.imuBias_ConstantBias(),
                                              biasnoise)
    newgraph.push_back(biasprior)
    initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
    velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)

    # Calculate with correct initial velocity
    n_velocity = vector3(0, angular_velocity * radius, 0)
    velprior = gtsam.PriorFactorVector(V(0), n_velocity, velnoise)
    newgraph.push_back(velprior)
    initialEstimate.insert(V(0), n_velocity)

    accum = gtsam.PreintegratedImuMeasurements(PARAMS)

    # Simulate poses and imu measurements, adding them to the factor graph
    for i in range(80):
        t = i * delta_t  # simulation time
        if i == 0:  # First time add two poses
            pose_1 = scenario.pose(delta_t)
            initialEstimate.insert(X(0), pose_0.compose(DELTA))
            initialEstimate.insert(X(1), pose_1.compose(DELTA))
github borglab / gtsam / cython / gtsam / utils / visual_data_generator.py View on Github external
def __init__(self, K=gtsam.Cal3_S2(), nrCameras=3, nrPoints=4):
        self.K = K
        self.Z = [x[:] for x in [[gtsam.Point2()] * nrPoints] * nrCameras]
        self.J = [x[:] for x in [[0] * nrPoints] * nrCameras]
        self.odometry = [gtsam.Pose3()] * nrCameras

        # Set Noise parameters
        self.noiseModels = Data.NoiseModels()
        self.noiseModels.posePrior = gtsam.noiseModel_Diagonal.Sigmas(
            np.array([0.001, 0.001, 0.001, 0.1, 0.1, 0.1]))
        # noiseModels.odometry = gtsam.noiseModel_Diagonal.Sigmas(
        #    np.array([0.001,0.001,0.001,0.1,0.1,0.1]))
        self.noiseModels.odometry = gtsam.noiseModel_Diagonal.Sigmas(
            np.array([0.05, 0.05, 0.05, 0.2, 0.2, 0.2]))
        self.noiseModels.pointPrior = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
        self.noiseModels.measurement = gtsam.noiseModel_Isotropic.Sigma(2, 1.0)
github borglab / gtsam / cython / gtsam / examples / ImuFactorExample.py View on Github external
def __init__(self):
        self.velocity = np.array([2, 0, 0])
        self.priorNoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
        self.velNoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)

        # Choose one of these twists to change scenario:
        zero_twist = (np.zeros(3), np.zeros(3))
        forward_twist = (np.zeros(3), self.velocity)
        loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity)
        sick_twist = (
            np.array([math.radians(30), -math.radians(30), 0]), self.velocity)

        accBias = np.array([-0.3, 0.1, 0.2])
        gyroBias = np.array([0.1, 0.3, -0.1])
        bias = gtsam.imuBias_ConstantBias(accBias, gyroBias)

        dt = 1e-2
        super(ImuFactorExample, self).__init__(sick_twist, bias, dt)
github borglab / gtsam / cython / gtsam / examples / ImuFactorExample2.py View on Github external
plt.pause(1)


# IMU preintegration parameters
# Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
g = 9.81
n_gravity = vector3(0, 0, -g)
PARAMS = gtsam.PreintegrationParams.MakeSharedU(g)
I = np.eye(3)
PARAMS.setAccelerometerCovariance(I * 0.1)
PARAMS.setGyroscopeCovariance(I * 0.1)
PARAMS.setIntegrationCovariance(I * 0.1)
PARAMS.setUse2ndOrderCoriolis(False)
PARAMS.setOmegaCoriolis(vector3(0, 0, 0))

BIAS_COVARIANCE = gtsam.noiseModel_Isotropic.Variance(6, 0.1)
DELTA = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
                    gtsam.Point3(0.05, -0.10, 0.20))


def IMU_example():
    """Run iSAM 2 example with IMU factor."""

    # Start with a camera on x-axis looking at origin
    radius = 30
    up = gtsam.Point3(0, 0, 1)
    target = gtsam.Point3(0, 0, 0)
    position = gtsam.Point3(radius, 0, 0)
    camera = gtsam.SimpleCamera.Lookat(position, target, up, gtsam.Cal3_S2())
    pose_0 = camera.pose()

    # Create the set of ground-truth landmarks and poses