How to use the enable.api.LineStyle function in enable

To help you get started, we’ve selected a few enable examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github enthought / chaco / chaco / contour_line_plot.py View on Github external
# The thickness(es) of the contour lines.
    # It can be either a scalar value, valid for all contour lines, or a list
    # of widths. If the list is too short with respect to then number of
    # contour lines, the values are repeated from the beginning of the list.
    # Widths are associated with levels of increasing value.
    widths = Trait(1.0, Float, List)

    # The line dash style(s).
    styles = Trait("signed", Str, List)

    # Line style for positive levels.
    positive_style = LineStyle("solid")

    # Line style for negative levels.
    negative_style = LineStyle("dash")

    #------------------------------------------------------------------------
    # Private traits
    #------------------------------------------------------------------------

    # Are the cached contours valid? If False, new ones need to be computed.
    _contour_cache_valid = Bool(False)

    # Cached collection of traces.
    _cached_contours = Dict

    # Is the cached width data valid?
    _widths_cache_valid = Bool(False)

    # Is the cached style data valid?
    _styles_cache_valid = Bool(False)
github enthought / chaco / chaco / tools / range_selection_overlay.py View on Github external
#: The name of the metadata to look at for dataspace bounds. The metadata
    #: can be either a tuple (dataspace_start, dataspace_end) in "selections" or
    #: a boolean array mask of seleted dataspace points with any other name
    metadata_name = Str("selections")

    #------------------------------------------------------------------------
    # Appearance traits
    #------------------------------------------------------------------------

    #: The color of the selection border line.
    border_color = ColorTrait("dodgerblue")
    #: The width, in pixels, of the selection border line.
    border_width = Float(1.0)
    #: The line style of the selection border line.
    border_style = LineStyle("solid")
    #: The color to fill the selection region.
    fill_color = ColorTrait("lightskyblue")
    #: The transparency of the fill color.
    alpha = Float(0.3)

    #------------------------------------------------------------------------
    # AbstractOverlay interface
    #------------------------------------------------------------------------

    def overlay(self, component, gc, view_bounds=None, mode="normal"):
        """ Draws this component overlaid on another component.

        Overrides AbstractOverlay.
        """
        axis_ndx = self.axis_index
        lower_left = [0,0]
github enthought / chaco / chaco / lineplot.py View on Github external
you want can require some verbose code. The create_line_plot() function
    in plot_factory.py can hide some of this verbosity for common cases.
    """
    #: The color of the line.
    color = black_color_trait

    #: The RGBA tuple for rendering lines.  It is always a tuple of length 4.
    #: It has the same RGB values as color_, and its alpha value is the alpha
    #: value of self.color multiplied by self.alpha.
    effective_color = Property(Tuple, depends_on=['color', 'alpha'])

    #: The color to use to highlight the line when selected.
    selected_color = ColorTrait("lightyellow")

    #: The style of the selected line.
    selected_line_style = LineStyle("solid")

    #: The name of the key in self.metadata that holds the selection mask
    metadata_name = Str("selections")

    #: The thickness of the line.
    line_width = Float(1.0)

    #: The line dash style.
    line_style = LineStyle

    #: The rendering style of the line plot.
    #:
    #: connectedpoints
    #:     "normal" style (default); each point is connected to subsequent and
    #:     prior points by line segments
    #: hold
github enthought / chaco / chaco / axis.py View on Github external
# The location of the axis relative to the plot.  This determines where
    # the axis title is located relative to the axis line.
    orientation = Enum("top", "bottom", "left", "right")

    # Is the axis line visible?
    axis_line_visible = Bool(True)

    # The color of the axis line.
    axis_line_color = ColorTrait("black")

    # The line thickness (in pixels) of the axis line.
    axis_line_weight = Float(1.0)

    # The dash style of the axis line.
    axis_line_style = LineStyle('solid')

    # A special version of the axis line that is more useful for geophysical
    # plots.
    small_haxis_style = Bool(False)

    # Does the axis ensure that its end labels fall within its bounding area?
    ensure_labels_bounded = Bool(False)

    # Does the axis prevent the ticks from being rendered outside its bounds?
    # This flag is off by default because the standard axis *does* render ticks
    # that encroach on the plot area.
    ensure_ticks_bounded = Bool(False)

    # Fired when the axis's range bounds change.
    updated = Event
github enthought / chaco / chaco / contour_line_plot.py View on Github external
#------------------------------------------------------------------------
    # Data-related traits
    #------------------------------------------------------------------------

    # The thickness(es) of the contour lines.
    # It can be either a scalar value, valid for all contour lines, or a list
    # of widths. If the list is too short with respect to then number of
    # contour lines, the values are repeated from the beginning of the list.
    # Widths are associated with levels of increasing value.
    widths = Trait(1.0, Float, List)

    # The line dash style(s).
    styles = Trait("signed", Str, List)

    # Line style for positive levels.
    positive_style = LineStyle("solid")

    # Line style for negative levels.
    negative_style = LineStyle("dash")

    #------------------------------------------------------------------------
    # Private traits
    #------------------------------------------------------------------------

    # Are the cached contours valid? If False, new ones need to be computed.
    _contour_cache_valid = Bool(False)

    # Cached collection of traces.
    _cached_contours = Dict

    # Is the cached width data valid?
    _widths_cache_valid = Bool(False)
github enthought / chaco / chaco / segment_plot.py View on Github external
from chaco.abstract_mapper import AbstractMapper
from chaco.base import point_dtype, rgba_dtype
from chaco.base_xy_plot import BaseXYPlot


class SegmentPlot(BaseXYPlot):
    """ Plot that draws a collection of line segments. """

    #: The single color to use when color_by_data is False.
    color = black_color_trait(redraw=True)

    #: The thickness of the line.
    line_width = Float(1.0, redraw=True)

    #: The line dash style.
    line_style = LineStyle(redraw=True)

    #: The rendering style of the segment plot.
    #:
    #: line
    #:    "Normal" direct connection between start and end points.
    #: orthogonal
    #:    Connect the start and end points by two line segments in orthogonal
    #:    directions.
    #: quad
    #:    Connect the start and end points by a quadratic Bezier curve.
    #: cubic
    #:    Connect the start and end points by a cubic Bezier curve.
    #:
    #: For non-linear segments, the tangent at the start matches the
    #: orientation of the plot (ie. horizontal orientation means
    #: a horizontal tangent).
github enthought / chaco / chaco / multi_line_plot.py View on Github external
scale = Float(1.0)
    offset = Float(0.0)

    fast_clip = Bool(False)

    # The color of the lines.
    color = black_color_trait

    # A function that returns the color of lines.  Overrides `color` if not None.
    color_func = Trait(None, None, Callable)

    # The color to use to highlight the line when selected.
    selected_color = ColorTrait("lightyellow")

    # The style of the selected line.
    selected_line_style = LineStyle("solid")

    # The name of the key in self.metadata that holds the selection mask
    metadata_name = Str("selections")

    # The thickness of the line.
    line_width = Float(1.0)

    # The line dash style.
    line_style = LineStyle

    use_global_bounds = Bool(True)

    # Minimum value in the `value` data source.  This must be provided
    # in the call to the constructor.
    global_min = Float
github enthought / chaco / chaco / line_scatterplot_1d.py View on Github external
#------------------------------------------------------------------------

    #: whether or not to display a selection
    show_selection = Bool(True)

    #: the plot data metadata name to watch for selection information
    selection_metadata_name = Str("selections")

    #: the thickness, in pixels, of the selected lines
    selected_line_width = Float(1.0)

    #: the color of the selected lines
    selected_color = ColorTrait("yellow")

    #: The line dash style of the selected line.
    selected_line_style = LineStyle("solid")

    #: The fade amount for unselected regions
    unselected_alpha = Float(0.3)

    #------------------------------------------------------------------------
    # Private methods
    #------------------------------------------------------------------------

    def _draw_plot(self, gc, view_bounds=None, mode="normal"):
        """ Draw the plot """
        coord = self._compute_screen_coord()
        lines = empty(shape=(len(coord), 4))

        if self.orientation == 'v':
            lines[:, 0] = self.x
            lines[:, 1] = coord
github enthought / chaco / chaco / tools / regression_lasso.py View on Github external
if len(x) < 2 or len(y) < 2:
                self.fit_params = None
                self.centroid = None
            else:
                self.fit_params = tuple(polyfit(x,y,1))
                self.centroid = (sum(x)/len(x)), (sum(y)/len(y))
        else:
            self.fit_params = None
            self.centroid = None
        return


class RegressionOverlay(LassoOverlay):

    line_color = ColorTrait("black")
    line_style = LineStyle("dash")
    line_width = Float(2.0)

    _label = Instance(Label, kw=dict(bgcolor="white", border_color="black",
                                 font="modern 14", border_width=1))

    def _draw_component(self, gc, view_bounds=None, mode="normal"):
        LassoOverlay._draw_component(self, gc, view_bounds, mode)
        selection = self.lasso_selection

        if selection.fit_params is not None:
            # draw the label overlay
            self._label.component = self.component
            c = self.component

            if selection.fit_params[1] < 0:
                operator = "-"
github enthought / chaco / chaco / polar_line_renderer.py View on Github external
origin_axis_color_ = (0,0,0,1)
    # The width of the origin axis.
    origin_axis_width = 2.0
    # The origin axis is visible.
    origin_axis_visible=True
    # The grid is visible.
    grid_visible= True
    # The orientation of the plot is horizontal; for any other value, it is
    # transposed
    orientation = 'h'
    # The color of the line.
    color = black_color_trait
    # The width of the line.
    line_width = Float(1.0)
    # The style of the line.
    line_style = LineStyle("solid")
    # The style of the grid lines.
    grid_style= LineStyle("dot")

    def _gather_points(self):
        """
        Collects the data points that are within the plot bounds and caches them
        """
        # This is just a stub for now.  We should really find the lines only
        # inside the screen range here.

        x = self.index.get_data()
        y = self.value.get_data()
        rad= min(self.width/2.0,self.height/2.0)
        sx = x*rad+ self.x + self.width/2.0
        sy = y*rad+ self.y + self.height/2.0