Directory Traversal Affecting gitpython package, versions [,3.1.35)


0.0
medium

Snyk CVSS

    Attack Complexity Low

    Threat Intelligence

    Exploit Maturity Proof of concept
    EPSS 0.06% (22nd percentile)
Expand this section
NVD
6.5 medium
Expand this section
Red Hat
5.1 medium

Do your applications use this vulnerable package?

In a few clicks we can analyze your entire application and see what components are vulnerable in your application, and suggest you quick fixes.

Test your applications
  • Snyk ID SNYK-PYTHON-GITPYTHON-5876644
  • published 31 Aug 2023
  • disclosed 30 Aug 2023
  • credit stsewd

How to fix?

Upgrade GitPython to version 3.1.35 or higher.

Overview

GitPython is a python library used to interact with Git repositories

Affected versions of this package are vulnerable to Directory Traversal due to improper validation of the final path. Although this vulnerability cannot be used to read the contents of files, it could potentially be used to trigger a denial of service for the program.

PoC

import git

r = git.Repo(".")

# This will make GitPython read the README.md file from the root of the repo
r.commit("../README.md")
r.tree("../README.md")
r.index.diff("../README.md")

# Reading /etc/random
# WARNING: this will probably halt your system, run with caution
# r.commit("../../../../../../../../../dev/random")

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys