Vulnerabilities

42 via 63 paths

Dependencies

471

Source

GitHub

Commit

8d9a927d

Find, fix and prevent vulnerabilities in your code.

Issue type
  • 42
  • 1
Severity
  • 1
  • 18
  • 21
  • 3
Status
  • 43
  • 0
  • 0

critical severity

Improper Input Validation

  • Vulnerable module: socket.io-parser
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.

Overview

socket.io-parser is a socket.io protocol parser

Affected versions of this package are vulnerable to Improper Input Validation. when parsing attachments containing untrusted user input. Attackers can overwrite the _placeholder object to place references to functions in query objects.

PoC

const decoder = new Decoder();

decoder.on("decoded", (packet) => {
  console.log(packet.data); // prints [ 'hello', [Function: splice] ]
})

decoder.add('51-["hello",{"_placeholder":true,"num":"splice"}]');
decoder.add(Buffer.from("world"));

Remediation

Upgrade socket.io-parser to version 3.3.3, 3.4.2, 4.0.5, 4.2.1 or higher.

References

high severity

Improper Neutralization of Special Elements in Data Query Logic

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.7.14

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf mongoose@5.7.14
    Remediation: Upgrade to mongoose@6.13.5.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper handling of $where in match queries. An attacker can manipulate search queries to inject malicious code.

Remediation

Upgrade mongoose to version 6.13.5, 7.8.3, 8.8.3 or higher.

References

high severity

Asymmetric Resource Consumption (Amplification)

  • Vulnerable module: body-parser
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 body-parser@1.18.3
    Remediation: Upgrade to express@4.20.0.

Overview

Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser and urlencoded functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.

Remediation

Upgrade body-parser to version 1.20.3 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.7.14

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf mongoose@5.7.14
    Remediation: Upgrade to mongoose@5.13.20.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in document.js, via update functions such as findByIdAndUpdate(). This allows attackers to achieve remote code execution.

Note: Only applications using Express and EJS are vulnerable.

PoC


import { connect, model, Schema } from 'mongoose';

await connect('mongodb://127.0.0.1:27017/exploit');

const Example = model('Example', new Schema({ hello: String }));

const example = await new Example({ hello: 'world!' }).save();
await Example.findByIdAndUpdate(example._id, {
    $rename: {
        hello: '__proto__.polluted'
    }
});

// this is what causes the pollution
await Example.find();

const test = {};
console.log(test.polluted); // world!
console.log(Object.prototype); // [Object: null prototype] { polluted: 'world!' }

process.exit();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.20, 6.11.3, 7.3.4 or higher.

References

high severity

Arbitrary Code Injection

  • Vulnerable module: xmlhttprequest-ssl
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io@2.2.0.

Overview

xmlhttprequest-ssl is a fork of xmlhttprequest.

Affected versions of this package are vulnerable to Arbitrary Code Injection. Provided requests are sent synchronously (async=False on xhr.open), malicious user input flowing into xhr.send could result in arbitrary code being injected and run.

POC

const { XMLHttpRequest } = require("xmlhttprequest")

const xhr = new XMLHttpRequest()
xhr.open("POST", "http://localhost.invalid/", false /* use synchronize request */)
xhr.send("\\');require(\"fs\").writeFileSync(\"/tmp/aaaaa.txt\", \"poc-20210306\");req.end();//")

Remediation

Upgrade xmlhttprequest-ssl to version 1.6.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ansi-regex
  • Introduced through: steam@1.4.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 steam-resources@git+https://github.com/seishun/node-steam-resources.git#v1.0.0 protobufjs@4.1.3 yargs@3.32.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 steam-resources@git+https://github.com/seishun/node-steam-resources.git#v1.0.0 protobufjs@4.1.3 yargs@3.32.0 cliui@3.2.0 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 steam-resources@git+https://github.com/seishun/node-steam-resources.git#v1.0.0 protobufjs@4.1.3 yargs@3.32.0 cliui@3.2.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 steam-resources@git+https://github.com/seishun/node-steam-resources.git#v1.0.0 protobufjs@4.1.3 yargs@3.32.0 cliui@3.2.0 wrap-ansi@2.1.0 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 steam-resources@git+https://github.com/seishun/node-steam-resources.git#v1.0.0 protobufjs@4.1.3 yargs@3.32.0 cliui@3.2.0 wrap-ansi@2.1.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]* and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*.

PoC

import ansiRegex from 'ansi-regex';

for(var i = 1; i <= 50000; i++) {
    var time = Date.now();
    var attack_str = "\u001B["+";".repeat(i*10000);
    ansiRegex().test(attack_str)
    var time_cost = Date.now() - time;
    console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ansi-regex to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: socket.io@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 engine.io@3.2.1
    Remediation: Upgrade to socket.io@2.5.0.

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS) via a POST request to the long polling transport.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 3.6.0 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: socket.io@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 engine.io@3.2.1
    Remediation: Upgrade to socket.io@2.5.0.

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious client could send a specially crafted HTTP request, triggering an uncaught exception and killing the Node.js process.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 3.6.1, 6.2.1 or higher.

References

high severity

Directory Traversal

  • Vulnerable module: moment
  • Introduced through: moment@2.11.2

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf moment@2.11.2
    Remediation: Upgrade to moment@2.29.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Directory Traversal when a user provides a locale string which is directly used to switch moment locale.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade moment to version 2.29.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@5.7.14

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf mongoose@5.7.14 mquery@3.2.2
    Remediation: Upgrade to mongoose@5.12.3.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the mergeClone() function.

PoC by zhou, peng

mquery = require('mquery');
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mquery.utils.mergeClone({}, JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.5 or higher.

References

high severity

Prototype Poisoning

  • Vulnerable module: qs
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 qs@6.5.2
    Remediation: Upgrade to express@4.17.3.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 body-parser@1.18.3 qs@6.5.2
    Remediation: Upgrade to express@4.17.3.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.

Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: socket.io-parser
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.

Overview

socket.io-parser is a socket.io protocol parser

Affected versions of this package are vulnerable to Denial of Service (DoS) via a large packet because a concatenation approach is used.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade socket.io-parser to version 3.3.2, 3.4.1 or higher.

References

high severity

Cross-site Scripting (XSS)

  • Vulnerable module: toastr
  • Introduced through: toastr@2.1.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf toastr@2.1.4

Overview

toastr is a Javascript library for non-blocking notifications. jQuery is required. The goal is to create a simple core library that can be customized and extended

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) due to the missing sanitization of message and title which are not regarded as plain text by default.

Note: The fix is not by default. As the documentation of the package mentions it; In case you want to escape HTML characters in title and message set toastr.options.escapeHtml = true.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for toastr.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: ws
  • Introduced through: socket.io@2.1.1 and socket.io-client@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 engine.io@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.3.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io-client@2.4.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.4.0.

Overview

ws is a simple to use websocket client, server and console for node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS) when the number of received headers exceed the server.maxHeadersCount or request.maxHeadersCount threshold.

Workaround

This issue can be mitigating by following these steps:

  1. Reduce the maximum allowed length of the request headers using the --max-http-header-size=size and/or the maxHeaderSize options so that no more headers than the server.maxHeadersCount limit can be sent.

  2. Set server.maxHeadersCount to 0 so that no limit is applied.

PoC


const http = require('http');
const WebSocket = require('ws');

const server = http.createServer();

const wss = new WebSocket.Server({ server });

server.listen(function () {
  const chars = "!#$%&'*+-.0123456789abcdefghijklmnopqrstuvwxyz^_`|~".split('');
  const headers = {};
  let count = 0;

  for (let i = 0; i < chars.length; i++) {
    if (count === 2000) break;

    for (let j = 0; j < chars.length; j++) {
      const key = chars[i] + chars[j];
      headers[key] = 'x';

      if (++count === 2000) break;
    }
  }

  headers.Connection = 'Upgrade';
  headers.Upgrade = 'websocket';
  headers['Sec-WebSocket-Key'] = 'dGhlIHNhbXBsZSBub25jZQ==';
  headers['Sec-WebSocket-Version'] = '13';

  const request = http.request({
    headers: headers,
    host: '127.0.0.1',
    port: server.address().port
  });

  request.end();
});

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade ws to version 5.2.4, 6.2.3, 7.5.10, 8.17.1 or higher.

References

high severity

Directory Traversal

  • Vulnerable module: adm-zip
  • Introduced through: steam@1.4.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 adm-zip@0.4.16

Overview

adm-zip is a JavaScript implementation for zip data compression for NodeJS.

Affected versions of this package are vulnerable to Directory Traversal. It could extract files outside the target folder.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade adm-zip to version 0.5.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@5.7.14

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf mongoose@5.7.14 mquery@3.2.2
    Remediation: Upgrade to mongoose@5.11.7.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the merge function within lib/utils.js. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.

PoC

   require('./env').getCollection(function(err, collection) {
      assert.ifError(err);
      col = collection;
      done();
    });
    var payload = JSON.parse('{"__proto__": {"polluted": "vulnerable"}}');
    var m = mquery(payload);
    console.log({}.polluted);
// The empty object {} will have a property called polluted which will print vulnerable

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.3 or higher.

References

high severity

Access Restriction Bypass

  • Vulnerable module: xmlhttprequest-ssl
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io@2.2.0.

Overview

xmlhttprequest-ssl is a fork of xmlhttprequest.

Affected versions of this package are vulnerable to Access Restriction Bypass. The package disables SSL certificate validation by default, because rejectUnauthorized (when the property exists but is undefined) is considered to be false within the https.request function of Node.js. In other words, no certificate is ever rejected.

PoC

const XMLHttpRequest = require('xmlhttprequest-ssl');

var xhr = new XMLHttpRequest();		/* pass empty object in version 1.5.4 to work around bug */

xhr.open("GET", "https://self-signed.badssl.com/");
xhr.addEventListener('readystatechange', () => console.log('ready state:', xhr.status));
xhr.addEventListener('loadend', loadend);

function loadend()
{
  console.log('loadend:', xhr);
  if (xhr.status === 0 && xhr.statusText.code === 'DEPTH_ZERO_SELF_SIGNED_CERT')
    console.log('test passed: self-signed cert rejected');
  else
    console.log('*** test failed: self-signed cert used to retrieve content');
}

xhr.send();

Remediation

Upgrade xmlhttprequest-ssl to version 1.6.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: protobufjs
  • Introduced through: steam@1.4.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 steam-resources@git+https://github.com/seishun/node-steam-resources.git#v1.0.0 protobufjs@4.1.3

Overview

protobufjs is a Protocol Buffers for JavaScript (& TypeScript).

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks. This can cause an impact of about 10 seconds matching time for data 45 characters long.

Disclosure Timeline

  • Feb 12th, 2018 - Initial Disclosure to package owner
  • Feb 22th, 2018 - Initial Response from package owner
  • Feb 26th, 2018 - Fix issued
  • Mar 5th, 2018 - Vulnerability published

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade protobufjs to version 5.0.3, 6.8.6 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.7.14

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf mongoose@5.7.14
    Remediation: Upgrade to mongoose@5.13.15.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in the Schema.path() function.

Note: CVE-2022-24304 is a duplicate of CVE-2022-2564.

PoC:

const mongoose = require('mongoose');
const schema = new mongoose.Schema();

malicious_payload = '__proto__.toString'

schema.path(malicious_payload, [String])

x = {}
console.log(x.toString())

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.15, 6.4.6 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-to-regexp
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 path-to-regexp@0.1.7
    Remediation: Upgrade to express@4.20.0.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/, if two parameters within a single segment are separated by a character other than a / or .. Poor performance will block the event loop and can lead to a DoS.

Note: While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict option, which returns an error if a dangerous regular expression is detected.

Workaround

This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes - and /.

PoC

/a${'-a'.repeat(8_000)}/a

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade path-to-regexp to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-to-regexp
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 path-to-regexp@0.1.7
    Remediation: Upgrade to express@4.21.2.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, when the separator is not . (e.g. no /:a-:b). Poor performance will block the event loop and can lead to a DoS.

Note:

This issue is caused due to an incomplete fix for CVE-2024-45296.

Workarounds

This can be mitigated by avoiding using two parameters within a single path segment, when the separator is not . (e.g. no /:a-:b). Alternatively, the regex used for both parameters can be defined to ensure they do not overlap to allow backtracking.

PoC

/a${'-a'.repeat(8_000)}/a

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade path-to-regexp to version 0.1.12 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: bootstrap
  • Introduced through: bootstrap@4.0.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf bootstrap@4.0.0
    Remediation: Upgrade to bootstrap@4.3.1.

Overview

bootstrap is a popular front-end framework for faster and easier web development.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) in data-template, data-content and data-title properties of tooltip/popover.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade bootstrap to version 3.4.1, 4.3.1 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: bootstrap
  • Introduced through: bootstrap@4.0.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf bootstrap@4.0.0
    Remediation: Upgrade to bootstrap@4.1.2.

Overview

bootstrap is a popular front-end framework for faster and easier web development.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the tooltip, collapse and scrollspy plugins.

Details

Remediation

Upgrade bootstrap to version 4.1.2 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: bootstrap
  • Introduced through: bootstrap@4.0.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf bootstrap@4.0.0
    Remediation: Upgrade to bootstrap@4.1.2.

Overview

bootstrap is a popular front-end framework for faster and easier web development.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the tooltip, collapse and scrollspy plugins.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade bootstrap to version 3.4.0, 4.1.2 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: node-fetch
  • Introduced through: react-dom@16.0.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf react-dom@16.0.1 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
    Remediation: Upgrade to react-dom@16.5.0.

Overview

node-fetch is a light-weight module that brings window.fetch to node.js

Affected versions of this package are vulnerable to Information Exposure when fetching a remote url with Cookie, if it get a Location response header, it will follow that url and try to fetch that url with provided cookie. This can lead to forwarding secure headers to 3th party.

Remediation

Upgrade node-fetch to version 2.6.7, 3.1.1 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: request@2.88.2

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: request@2.88.2

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf request@2.88.2 tough-cookie@2.5.0

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

  • Vulnerable module: cookie
  • Introduced through: cookie-parser@1.3.5, express@4.16.4 and others

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf cookie-parser@1.3.5 cookie@0.1.3
    Remediation: Upgrade to cookie-parser@1.4.7.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 cookie@0.3.1
    Remediation: Upgrade to express@4.21.1.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 engine.io@3.2.1 cookie@0.3.1
    Remediation: Upgrade to socket.io@4.8.0.

Overview

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.

Workaround

Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade cookie to version 0.7.0 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: express-handlebars@3.0.2, brunch@3.0.0 and others

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express-handlebars@3.0.2 glob@7.2.3 inflight@1.0.6
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf brunch@3.0.0 deppack@0.9.2 glob@7.2.3 inflight@1.0.6
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf brunch@3.0.0 deppack@0.9.2 true-case-path@1.0.3 glob@7.2.3 inflight@1.0.6
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf steam@1.4.0 steam-resources@git+https://github.com/seishun/node-steam-resources.git#v1.0.0 protobufjs@4.1.3 glob@5.0.15 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Open Redirect

  • Vulnerable module: express
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4
    Remediation: Upgrade to express@4.19.2.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl before passing it to the location header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.

Remediation

Upgrade express to version 4.19.2, 5.0.0-beta.3 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: bootstrap
  • Introduced through: bootstrap@4.0.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf bootstrap@4.0.0
    Remediation: Upgrade to bootstrap@5.0.0.

Overview

bootstrap is a popular front-end framework for faster and easier web development.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) in the carousel component through the href attribute of an <a> tag due to inadequate sanitization. An attacker can execute arbitrary JavaScript within the victim's browser by crafting malicious input in the data-slide attribute.

Notes:

  1. Exploiting this vulnerability is also possible when the data_target attribute doesn’t exist or can’t be found, allowing the bypass of the clickHandler functionality.

PoC

<div id="myCarousel" class="carousel"></div>
<a href="javascript:alert('XSS href')" data-slide="prev">
  Previous Slide
</a>

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade bootstrap to version 5.0.0-beta1 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: bootstrap
  • Introduced through: bootstrap@4.0.0

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf bootstrap@4.0.0
    Remediation: Upgrade to bootstrap@5.0.0.

Overview

bootstrap is a popular front-end framework for faster and easier web development.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) due to inadequate sanitization of the href attribute, belonging to an <a> tag, in the carousel component. An attacker can execute arbitrary JavaScript within the victim's browser by injecting malicious code into the data-slide or data-slide-to attributes.

Notes:

  1. Exploiting this vulnerability is also possible when the data_target attribute doesn’t exist or can’t be found, allowing the bypass of the clickHandler functionality.

PoC

<div id="myCarousel" class="carousel"></div>
<a href="javascript:alert('XSS href')" data-slide="prev">
  Previous Slide
</a>

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade bootstrap to version 5.0.0-beta1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@2.11.2

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf moment@2.11.2
    Remediation: Upgrade to moment@2.15.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of the package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks for any locale that has separate format and standalone options and format input can be controlled by the user.

An attacker can provide a specially crafted input to the format function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).

Disclosure Timeline

  • October 19th, 2016 - Reported the issue to package owner.
  • October 19th, 2016 - Issue acknowledged by package owner.
  • October 24th, 2016 - Issue fixed and version 2.15.2 released.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

References

medium severity

Denial of Service

  • Vulnerable module: node-fetch
  • Introduced through: react-dom@16.0.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf react-dom@16.0.1 fbjs@0.8.18 isomorphic-fetch@2.2.1 node-fetch@1.7.3
    Remediation: Upgrade to react-dom@16.5.0.

Overview

node-fetch is a light-weight module that brings window.fetch to node.js

Affected versions of this package are vulnerable to Denial of Service. Node Fetch did not honor the size option after following a redirect, which means that when a content size was over the limit, a FetchError would never get thrown and the process would end without failure.

Remediation

Upgrade node-fetch to version 2.6.1, 3.0.0-beta.9 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.7.14

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf mongoose@5.7.14
    Remediation: Upgrade to mongoose@5.12.2.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution. The mongoose.Schema() function is subject to prototype pollution due to the recursively calling of Schema.prototype.add() function to add new items into the schema object. This vulnerability allows modification of the Object prototype.

PoC

mongoose = require('mongoose');
mongoose.version; //'5.12.0'
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mongoose.Schema(JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.12.2 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mpath
  • Introduced through: mongoose@5.7.14

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf mongoose@5.7.14 mpath@0.6.0
    Remediation: Upgrade to mongoose@5.13.9.

Overview

mpath is a package that gets/sets javascript object values using MongoDB-like path notation.

Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2018-16490. In particular, the condition ignoreProperties.indexOf(parts[i]) !== -1 returns -1 if parts[i] is ['__proto__']. This is because the method that has been called if the input is an array is Array.prototype.indexOf() and not String.prototype.indexOf(). They behave differently depending on the type of the input.

PoC

const mpath = require('mpath');
// mpath.set(['__proto__', 'polluted'], 'yes', {});
// console.log(polluted); // ReferenceError: polluted is not defined

mpath.set([['__proto__'], 'polluted'], 'yes', {});
console.log(polluted); // yes

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mpath to version 0.8.4 or higher.

References

medium severity

Insecure Defaults

  • Vulnerable module: socket.io
  • Introduced through: socket.io@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1
    Remediation: Upgrade to socket.io@2.4.0.

Overview

socket.io is a node.js realtime framework server.

Affected versions of this package are vulnerable to Insecure Defaults due to CORS Misconfiguration. All domains are whitelisted by default.

Remediation

Upgrade socket.io to version 2.4.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ws
  • Introduced through: socket.io@2.1.1 and socket.io-client@2.1.1

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 engine.io@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.3.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io-client@2.4.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.4.0.

Overview

ws is a simple to use websocket client, server and console for node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A specially crafted value of the Sec-Websocket-Protocol header can be used to significantly slow down a ws server.

##PoC

for (const length of [1000, 2000, 4000, 8000, 16000, 32000]) {
  const value = 'b' + ' '.repeat(length) + 'x';
  const start = process.hrtime.bigint();

  value.trim().split(/ *, */);

  const end = process.hrtime.bigint();

  console.log('length = %d, time = %f ns', length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ws to version 7.4.6, 6.2.2, 5.2.3 or higher.

References

medium severity

Cross-site Scripting

  • Vulnerable module: express
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4
    Remediation: Upgrade to express@4.20.0.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect method. An attacker can execute arbitrary code by passing malicious input to this method.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Remediation

Upgrade express to version 4.20.0, 5.0.0 or higher.

References

medium severity

LGPL-3.0 license

  • Module: javascript-state-machine
  • Introduced through: javascript-state-machine@2.3.5

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf javascript-state-machine@2.3.5

LGPL-3.0 license

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@2.11.2

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf moment@2.11.2
    Remediation: Upgrade to moment@2.19.3.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (/[0-9]*['a-z\u00A0-\u05FF\u0700-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF]+|[\u0600-\u06FF\/]+(\s*?[\u0600-\u06FF]+){1,2}/i) in order to parse dates specified as strings. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.19.3 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: send
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 send@0.16.2
    Remediation: Upgrade to express@4.20.0.
  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 serve-static@1.13.2 send@0.16.2
    Remediation: Upgrade to express@4.21.0.

Overview

send is a Better streaming static file server with Range and conditional-GET support

Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect() function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.

Note:

Exploiting this vulnerability requires the following:

  1. The attacker needs to control the input to response.redirect()

  2. Express MUST NOT redirect before the template appears

  3. The browser MUST NOT complete redirection before

  4. The user MUST click on the link in the template

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade send to version 0.19.0, 1.1.0 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: serve-static
  • Introduced through: express@4.16.4

Detailed paths

  • Introduced through: sws_gathers@cblanc/sws_gathers#8d9a927d80b1cb5f413a7374b9a45869f2f949cf express@4.16.4 serve-static@1.13.2
    Remediation: Upgrade to express@4.20.0.

Overview

serve-static is a server.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect function. An attacker can manipulate the redirection process by injecting malicious code into the input.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade serve-static to version 1.16.0, 2.1.0 or higher.

References