Vulnerabilities

39 via 71 paths

Dependencies

357

Source

GitHub

Commit

835cc313

Find, fix and prevent vulnerabilities in your code.

Severity
  • 18
  • 19
  • 2
Status
  • 39
  • 0
  • 0

high severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference in the function Sass::Functions::selector_append which could be leveraged by an attacker to cause a denial of service (application crash) or possibly have unspecified other impact. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

high severity

Use After Free

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Use After Free via the SharedPtr class in SharedPtr.cpp (or SharedPtr.hpp) that may cause a denial of service (application crash) or possibly have unspecified other impact. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

high severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: cross-spawn
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 cross-spawn@3.0.1
    Remediation: Upgrade to node-sass@5.0.0.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.

PoC

const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
  str += "\\";
}
str += "◎";

console.log("start")
argument(str)
console.log("end")

// run `npm install cross-spawn` and `node attack.js` 
// then the program will stuck forever with high CPU usage

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade cross-spawn to version 6.0.6, 7.0.5 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \ and / characters as path separators. However, \ is a valid filename character on posix systems.

By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location. This can lead to extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.

Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at FOO, followed by a symbolic link named foo, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.

Remediation

Upgrade tar to version 6.1.7, 5.0.8, 4.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive can include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. This leads to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and extracting arbitrary files into that location.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain .. path portions, and resolving the sanitized paths against the extraction target directory.

This logic is insufficient on Windows systems when extracting tar files that contain a path that is not an absolute path, but specify a drive letter different from the extraction target, such as C:some\path. If the drive letter does not match the extraction target, for example D:\extraction\dir, then the result of path.resolve(extractionDirectory, entryPath) resolves against the current working directory on the C: drive, rather than the extraction target directory.

Additionally, a .. portion of the path can occur immediately after the drive letter, such as C:../foo, and is not properly sanitized by the logic that checks for .. within the normalized and split portions of the path.

Note: This only affects users of node-tar on Windows systems.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient symlink protection. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain both a directory and a symlink with the same name as the directory. This order of operations results in the directory being created and added to the node-tar directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where node-tar checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location.

Remediation

Upgrade tar to version 3.2.3, 4.4.15, 5.0.7, 6.1.2 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient absolute path sanitization.

node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths flag is not set to true. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example, the path /home/user/.bashrc would turn into home/user/.bashrc.

This logic is insufficient when file paths contain repeated path roots such as ////home/user/.bashrc. node-tar only strips a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc) still resolves to an absolute path.

Remediation

Upgrade tar to version 3.2.2, 4.4.14, 5.0.6, 6.1.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ansi-regex
  • Introduced through: node-sass@4.14.1 and keytar@4.4.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.0.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.0.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b keytar@4.4.1 prebuild-install@5.2.4 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to keytar@7.1.0.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b keytar@4.4.1 prebuild-install@5.2.4 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to keytar@7.1.0.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]* and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*.

PoC

import ansiRegex from 'ansi-regex';

for(var i = 1; i <= 50000; i++) {
    var time = Date.now();
    var attack_str = "\u001B["+";".repeat(i*10000);
    ansiRegex().test(attack_str)
    var time_cost = Date.now() - time;
    console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ansi-regex to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1
    Remediation: Upgrade to axios@0.21.3.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the trim function.

PoC

// poc.js

var {trim} = require("axios/lib/utils");

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var time = Date.now();
trim(build_blank(50000))
var time_cost = Date.now() - time;
console.log("time_cost: " + time_cost)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 0.21.3 or higher.

References

high severity

Uncontrolled resource consumption

  • Vulnerable module: braces
  • Introduced through: chokidar@2.1.8

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 braces@2.3.2
    Remediation: Upgrade to chokidar@3.0.0.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2
    Remediation: Upgrade to chokidar@4.0.0.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2

Overview

braces is a Bash-like brace expansion, implemented in JavaScript.

Affected versions of this package are vulnerable to Uncontrolled resource consumption due improper limitation of the number of characters it can handle, through the parse function. An attacker can cause the application to allocate excessive memory and potentially crash by sending imbalanced braces as input.

PoC

const { braces } = require('micromatch');

console.log("Executing payloads...");

const maxRepeats = 10;

for (let repeats = 1; repeats <= maxRepeats; repeats += 1) {
  const payload = '{'.repeat(repeats*90000);

  console.log(`Testing with ${repeats} repeats...`);
  const startTime = Date.now();
  braces(payload);
  const endTime = Date.now();
  const executionTime = endTime - startTime;
  console.log(`Regex executed in ${executionTime / 1000}s.\n`);
} 

Remediation

Upgrade braces to version 3.0.3 or higher.

References

high severity

Inefficient Regular Expression Complexity

  • Vulnerable module: micromatch
  • Introduced through: chokidar@2.1.8

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10
    Remediation: Upgrade to chokidar@4.0.0.
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10

Overview

Affected versions of this package are vulnerable to Inefficient Regular Expression Complexity due to the use of unsafe pattern configurations that allow greedy matching through the micromatch.braces() function. An attacker can cause the application to hang or slow down by passing a malicious payload that triggers extensive backtracking in regular expression processing.

Remediation

Upgrade micromatch to version 4.0.8 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 semver@5.3.0
    Remediation: Upgrade to node-sass@5.0.0.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: trim-newlines
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 meow@3.7.0 trim-newlines@1.0.0
    Remediation: Upgrade to node-sass@6.0.1.

Overview

trim-newlines is a Trim newlines from the start and/or end of a string

Affected versions of this package are vulnerable to Denial of Service (DoS) via the end() method.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade trim-newlines to version 3.0.1, 4.0.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: unset-value
  • Introduced through: chokidar@2.1.8

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 anymatch@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 readdirp@2.2.1 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the unset function in index.js, because it allows access to object prototype properties.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade unset-value to version 2.0.1 or higher.

References

high severity

Improper Handling of Extra Parameters

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Improper Handling of Extra Parameters due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches.

PoC

# Case 1 : Bypassing localhost restriction
let url = 'http://[localhost]/admin';
try{
    new URL(url); // ERROR : Invalid URL
}catch{
    url.parse(url); // -> http://localhost/admin
}

# Case 2 : Bypassing domain restriction
let url = 'http://attacker.domain*.allowed.domain:a';
try{
    new URL(url); // ERROR : Invalid URL
}catch{
    url.parse(url); // -> http://attacker.domain/*.allowed.domain:a
}

Remediation

Upgrade follow-redirects to version 1.15.4 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: nedb
  • Introduced through: nedb@1.8.0

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b nedb@1.8.0

Overview

nedb is an embedded persistent or in memory database for Node.js, nw.js, Electron and browsers, 100% JavaScript, no binary dependency.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a __proto__ or constructor.prototype payload.

PoC by Snyk

const Datastore = require("nedb");
const db = new Datastore();
db.insert({hello: 'world'}, (err) => {
    db.update({hello: 'world'}, {$set: {'__proto__.polluted_1': true}}, {}, (err) => {
        console.log(({}).polluted_1); // true
    });
    db.update({hello: 'world'}, {$set: {'constructor.prototype.polluted_2': true}}, {}, (err) => {
        console.log(({}).polluted_2); // true
    });
});

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

There is no fixed version for nedb.

high severity

Cross-site Request Forgery (CSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1
    Remediation: Upgrade to axios@0.28.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN header using the secret XSRF-TOKEN cookie value in all requests to any server when the XSRF-TOKEN0 cookie is available, and the withCredentials setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.

Workaround

Users should change the default XSRF-TOKEN cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.

Remediation

Upgrade axios to version 0.28.0, 1.6.0 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Information Exposure due to the handling of the Proxy-Authorization header across hosts. When using a dependent library, it only clears the authorization header during cross-domain redirects but allows the proxy-authentication header, which contains credentials, to persist. This behavior may lead to the unintended leakage of credentials if an attacker can trigger a cross-domain redirect and capture the persistent proxy-authentication header.

PoC

const axios = require('axios');

axios.get('http://127.0.0.1:10081/',{
headers: {
'AuThorization': 'Rear Test',
'ProXy-AuthoriZation': 'Rear Test',
'coOkie': 't=1'
}
}).then(function (response) {
console.log(response);
})

Remediation

Upgrade follow-redirects to version 1.15.6 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Denial of Service (DoS). Uncontrolled recursion is possible in Sass::Complex_Selector::perform in ast.hpp and Sass::Inspect::operator in inspect.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds. A heap-based buffer over-read exists in Sass::Prelexer::parenthese_scope in prelexer.hpp. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds via Sass::Prelexer::alternatives in prelexer.hpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read. The function handle_error in sass_context.cpp allows attackers to cause a denial-of-service resulting from a heap-based buffer over-read via a crafted sass file. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 request@2.88.2
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Uncontrolled Resource Consumption ('Resource Exhaustion')

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.

Remediation

Upgrade tar to version 6.2.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 request@2.88.2 tough-cookie@2.5.0

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: asar@1.0.0 and node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b asar@1.0.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 sass-graph@2.2.5 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 true-case-path@1.0.3 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 gaze@1.1.3 globule@1.3.4 glob@7.1.7 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b asar@1.0.0 tmp-promise@1.1.0 tmp@0.1.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Server-Side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1
    Remediation: Upgrade to axios@0.21.1.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF). An attacker is able to bypass a proxy by providing a URL that responds with a redirect to a restricted host or IP address.

Remediation

Upgrade axios to version 0.21.1 or higher.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: underscore
  • Introduced through: nedb@1.8.0

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b nedb@1.8.0 underscore@1.4.4
  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b nedb@1.8.0 binary-search-tree@0.2.5 underscore@1.4.4

Overview

underscore is a JavaScript's functional programming helper library.

Affected versions of this package are vulnerable to Arbitrary Code Injection via the template function, particularly when the variable option is taken from _.templateSettings as it is not sanitized.

PoC

const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();

Remediation

Upgrade underscore to version 1.13.0-2, 1.12.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1
    Remediation: Upgrade to axios@1.6.3.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2). This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.

PoC

const axios = require('axios');

console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');

console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');


/* stdout
t1: 60.826ms
t2: 5.826s
*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 1.6.3 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Information Exposure by leaking the cookie header to a third party site in the process of fetching a remote URL with the cookie in the request body. If the response contains a location header, it will follow the redirect to another URL of a potentially malicious actor, to which the cookie would be exposed.

Remediation

Upgrade follow-redirects to version 1.14.7 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: glob-parent
  • Introduced through: chokidar@2.1.8

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b chokidar@2.1.8 glob-parent@3.1.0
    Remediation: Upgrade to chokidar@3.0.0.

Overview

glob-parent is a package that helps extracting the non-magic parent path from a glob string.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure regex used to check for strings ending in enclosure containing path separator.

PoC by Yeting Li

var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}

return ret;
}

globParent(build_attack(5000));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade glob-parent to version 5.1.2 or higher.

References

medium severity

Improper Certificate Validation

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1
    Remediation: Upgrade to node-sass@7.0.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Improper Certificate Validation. Certificate validation is disabled by default when requesting binaries, even if the user is not specifying an alternative download path.

Remediation

Upgrade node-sass to version 7.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: scss-tokenizer
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 sass-graph@2.2.5 scss-tokenizer@0.2.3
    Remediation: Upgrade to node-sass@7.0.2.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the loadAnnotation() function, due to the usage of insecure regex.

PoC

var scss = require("scss-tokenizer")
function build_attack(n) {
    var ret = "a{}"
    for (var i = 0; i < n; i++) {
        ret += "/*# sourceMappingURL="
    }
    return ret + "!";
}

// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            scss.tokenize(attack_str)
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade scss-tokenizer to version 0.4.3 or higher.

References

medium severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference via Sass::Parser::parseCompoundSelectorin parser_selectors.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read via Sass::weaveParents in ast_sel_weave.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for node-sass.

References

medium severity

Uncontrolled Recursion

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Uncontrolled Recursion via Sass::Eval::operator()(Sass::Binary_Expression*) in eval.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: tar
  • Introduced through: node-sass@4.14.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b node-sass@4.14.1 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When stripping the trailing slash from files arguments, the f.replace(/\/+$/, '') performance of this function can exponentially degrade when f contains many / characters resulting in ReDoS.

This vulnerability is not likely to be exploitable as it requires that the untrusted input is being passed into the tar.extract() or tar.list() array of entries to parse/extract, which would be unusual.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade tar to version 6.1.4, 5.0.8, 4.4.16 or higher.

References

low severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: axios@0.18.1

Detailed paths

  • Introduced through: betterdiscord@JsSucks/BetterDiscordApp#835cc3134cbc80408faeec8b6df9608405650a1b axios@0.18.1 follow-redirects@1.5.10
    Remediation: Upgrade to axios@0.20.0.

Overview

Affected versions of this package are vulnerable to Information Exposure due a leakage of the Authorization header from the same hostname during HTTPS to HTTP redirection. An attacker who can listen in on the wire (or perform a MITM attack) will be able to receive the Authorization header due to the usage of the insecure HTTP protocol which does not verify the hostname the request is sending to.

Remediation

Upgrade follow-redirects to version 1.14.8 or higher.

References