How to use tqdm - 10 common examples

To help you get started, we’ve selected a few tqdm examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github huggingface / transformers / examples / run_ner.py View on Github external
steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
    set_seed(args)  # Added here for reproductibility
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
            if args.model_type != "distilbert":
github xoolive / traffic / traffic / data / datasets / __init__.py View on Github external
def download_data(dataset: Dict[str, str]) -> io.BytesIO:
    from .. import session

    f = session.get(dataset["url"], stream=True)
    total = int(f.headers["Content-Length"])
    buffer = io.BytesIO()
    for chunk in tqdm(
        f.iter_content(1024),
        total=total // 1024 + 1 if total % 1024 > 0 else 0,
        desc="download",
    ):
        buffer.write(chunk)

    buffer.seek(0)

    compute_md5 = md5(buffer.getbuffer()).hexdigest()
    if compute_md5 != dataset["md5sum"]:
        raise RuntimeError(
            f"Error in MD5 check: {compute_md5} instead of {dataset['md5sum']}"
        )

    return buffer
github tqdm / tqdm / tqdm / std.py View on Github external
axis = 0
                        elif axis == 'columns':
                            axis = 1
                        # when axis=0, total is shape[axis1]
                        total = df.size // df.shape[axis]

                # Init bar
                if deprecated_t[0] is not None:
                    t = deprecated_t[0]
                    deprecated_t[0] = None
                else:
                    t = tclass(*targs, total=total, **tkwargs)

                if len(args) > 0:
                    # *args intentionally not supported (see #244, #299)
                    TqdmDeprecationWarning(
                        "Except func, normal arguments are intentionally" +
                        " not supported by" +
                        " `(DataFrame|Series|GroupBy).progress_apply`." +
                        " Use keyword arguments instead.",
                        fp_write=getattr(t.fp, 'write', sys.stderr.write))

                try:
                    func = df._is_builtin_func(func)
                except TypeError:
                    pass

                # Define bar updating wrapper
                def wrapper(*args, **kwargs):
                    # update tbar correctly
                    # it seems `pandas apply` calls `func` twice
                    # on the first column/row to decide whether it can
github tqdm / tqdm / tqdm / std.py View on Github external
axis = 0
                        elif axis == 'columns':
                            axis = 1
                        # when axis=0, total is shape[axis1]
                        total = df.size // df.shape[axis]

                # Init bar
                if deprecated_t[0] is not None:
                    t = deprecated_t[0]
                    deprecated_t[0] = None
                else:
                    t = tclass(*targs, total=total, **tkwargs)

                if len(args) > 0:
                    # *args intentionally not supported (see #244, #299)
                    TqdmDeprecationWarning(
                        "Except func, normal arguments are intentionally" +
                        " not supported by" +
                        " `(DataFrame|Series|GroupBy).progress_apply`." +
                        " Use keyword arguments instead.",
                        fp_write=getattr(t.fp, 'write', sys.stderr.write))

                # Define bar updating wrapper
                def wrapper(*args, **kwargs):
                    # update tbar correctly
                    # it seems `pandas apply` calls `func` twice
                    # on the first column/row to decide whether it can
                    # take a fast or slow code path; so stop when t.total==t.n
                    t.update(n=1 if not t.total or t.n < t.total else 0)
                    return func(*args, **kwargs)

                # Apply the provided function (in **kwargs)
github Featuretools / DL-DB / tests / labeling_utils.py View on Github external
def create_labels(entityset,
                  min_training_data='28 days',
                  lead='7 days',
                  window='28 days',
                  reduce='sum',
                  binarize=None,
                  iterate_by=None):
    label_cols = ['quantity', 'price']
    time_index = "order_date"
    index = "customer_id"
    df = entityset['orders'].df.merge(
        entityset['order_products'].df, how='outer')

    tqdm.pandas(desc="Creating Labels", unit="customer")

    # # Only use data after one of the label columns has been non-null
    # for i, v in df[label_cols].iterrows():
        # if v.dropna(how='all').shape[0] > 0:
            # df = df.loc[slice(i, None), :]
            # break
    grouped = df.groupby(index, as_index=True)

    project_cutoff_dates = grouped.progress_apply(
        lambda df: make_labels_from_windows(
            df,
            cols=label_cols,
            min_training_data=min_training_data,
            lead=lead, window=window,
            index_col=index,
            date_col=time_index,
github jmcarpenter2 / swifter / swifter / swifter_tests.py View on Github external
def test_vectorized_math_applymap_on_large_dataframe(self):
        LOG.info("test_vectorized_math_applymap_on_large_dataframe")
        df = pd.DataFrame({"x": np.random.normal(size=1_000_000), "y": np.random.uniform(size=1_000_000)})

        tqdm.pandas(desc="Pandas Vec math applymap ~ DF")
        start_pd = time.time()
        pd_val = df.progress_applymap(math_vec_square)
        end_pd = time.time()
        pd_time = end_pd - start_pd

        start_swifter = time.time()
        swifter_val = df.swifter.progress_bar(desc="Vec math applymap ~ DF").applymap(math_vec_square)
        end_swifter = time.time()
        swifter_time = end_swifter - start_swifter

        self.assertEqual(pd_val, swifter_val)  # equality test
        if self.ncores > 1:  # speed test
            self.assertLess(swifter_time, pd_time)
github jmcarpenter2 / swifter / swifter / swifter_tests.py View on Github external
def test_nonvectorized_math_apply_on_large_series(self):
        LOG.info("test_nonvectorized_math_apply_on_large_series")
        df = pd.DataFrame({"x": np.random.normal(size=10_000_000)})
        series = df["x"]

        tqdm.pandas(desc="Pandas Nonvec math apply ~ Series")
        start_pd = time.time()
        pd_val = series.progress_apply(math_foo, compare_to=1)
        end_pd = time.time()
        pd_time = end_pd - start_pd

        start_swifter = time.time()
        swifter_val = series.swifter.progress_bar(desc="Nonvec math apply ~ Series").apply(math_foo, compare_to=1)
        end_swifter = time.time()
        swifter_time = end_swifter - start_swifter

        self.assertEqual(pd_val, swifter_val)  # equality test
        if self.ncores > 1:  # speed test
            self.assertLess(swifter_time, pd_time)
github jmcarpenter2 / swifter / swifter / swifter_tests.py View on Github external
def test_vectorized_math_apply_on_large_dataframe(self):
        LOG.info("test_vectorized_math_apply_on_large_dataframe")
        df = pd.DataFrame({"x": np.random.normal(size=1_000_000), "y": np.random.uniform(size=1_000_000)})

        tqdm.pandas(desc="Pandas Vec math apply ~ DF")
        start_pd = time.time()
        pd_val = df.progress_apply(math_vec_multiply, axis=1)
        end_pd = time.time()
        pd_time = end_pd - start_pd

        start_swifter = time.time()
        swifter_val = df.swifter.progress_bar(desc="Vec math apply ~ DF").apply(math_vec_multiply, axis=1)
        end_swifter = time.time()
        swifter_time = end_swifter - start_swifter

        self.assertEqual(pd_val, swifter_val)  # equality test
        if self.ncores > 1:  # speed test
            self.assertLess(swifter_time, pd_time)
github jmcarpenter2 / swifter / swifter / test_dataframe.py View on Github external
def test_vectorized_math_apply_on_large_dataframe(self):
        LOG.info("test_vectorized_math_apply_on_large_dataframe")
        df = pd.DataFrame({"x": np.random.normal(size=1_000_000), "y": np.random.uniform(size=1_000_000)})

        tqdm.pandas(desc="Pandas Vec math apply ~ DF")
        start_pd = time.time()
        pd_val = df.progress_apply(math_vec_multiply, axis=1)
        end_pd = time.time()
        pd_time = end_pd - start_pd

        start_swifter = time.time()
        swifter_val = df.swifter.progress_bar(desc="Vec math apply ~ DF").apply(math_vec_multiply, axis=1)
        end_swifter = time.time()
        swifter_time = end_swifter - start_swifter

        self.assertEqual(pd_val, swifter_val)  # equality test
        if self.ncores > 1:  # speed test
            self.assertLess(swifter_time, pd_time)
github jmcarpenter2 / swifter / swifter / test_dataframe.py View on Github external
def test_nonvectorized_math_applymap_on_large_dataframe(self):
        LOG.info("test_nonvectorized_math_applymap_on_large_dataframe")
        df = pd.DataFrame({"x": np.random.normal(size=5_000_000), "y": np.random.uniform(size=5_000_000)})

        tqdm.pandas(desc="Pandas Nonvec math applymap ~ DF")
        start_pd = time.time()
        pd_val = df.progress_applymap(math_foo)
        end_pd = time.time()
        pd_time = end_pd - start_pd

        start_swifter = time.time()
        swifter_val = df.swifter.progress_bar(desc="Nonvec math applymap ~ DF").applymap(math_foo)
        end_swifter = time.time()
        swifter_time = end_swifter - start_swifter

        self.assertEqual(pd_val, swifter_val)  # equality test
        if self.ncores > 1:  # speed test
            self.assertLess(swifter_time, pd_time)