Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_stamp_self_join(T_A, T_B):
m = 3
zone = int(np.ceil(m / 2))
left = np.array(
[
naive_mass(Q, T_B, m, i, zone)
for i, Q in enumerate(core.rolling_window(T_B, m))
],
dtype=object,
)
right = stamp.stamp(T_B, T_B, m, ignore_trivial=True)
replace_inf(left)
replace_inf(right)
npt.assert_almost_equal(left, right)
def test_stamp_A_B_join(T_A, T_B):
m = 3
left = np.array(
[naive_mass(Q, T_A, m) for Q in core.rolling_window(T_B, m)], dtype=object
)
right = stamp.stamp(T_A, T_B, m)
replace_inf(left)
replace_inf(right)
npt.assert_almost_equal(left, right)
Returns
-------
P : float64
Matrix profile for the window with index equal to `start`
I : Tuple[int64, int64, int64]
Matrix profile index, left matrix profile index, and right matrix profile
index for the window with index equal to `start`. The left and right matrix
profile indices are automatically set to `-1` for self-joins (i.e., when
`ignore_trivial` is set to `True`.
"""
# Handle first subsequence, add exclusionary zone
if ignore_trivial:
P, I = stamp.mass(T_B[start : start + m], T_A, M_T, Σ_T, start, excl_zone)
PL, IL = stamp.mass(
T_B[start : start + m], T_A, M_T, Σ_T, start, excl_zone, left=True
)
PR, IR = stamp.mass(
T_B[start : start + m], T_A, M_T, Σ_T, start, excl_zone, right=True
)
else:
P, I = stamp.mass(T_B[start : start + m], T_A, M_T, Σ_T)
# No left and right matrix profile available
IL = -1
IR = -1
return P, (I, IL, IR)
logger.warning("Try setting `ignore_trivial = False`.")
n = T_B.shape[0]
l = n - m + 1
excl_zone = int(np.ceil(m / 4)) # See Definition 3 and Figure 3
M_T, Σ_T = core.compute_mean_std(T_A, m)
QT = core.sliding_dot_product(T_B[:m], T_A)
QT_first = core.sliding_dot_product(T_A[:m], T_B)
μ_Q, σ_Q = core.compute_mean_std(T_B, m)
out = np.empty((l, 4), dtype=object)
# Handle first subsequence, add exclusionary zone
if ignore_trivial:
P, I = stamp.mass(T_B[:m], T_A, M_T, Σ_T, 0, excl_zone)
PR, IR = stamp.mass(T_B[:m], T_A, M_T, Σ_T, 0, excl_zone, right=True)
else:
P, I = stamp.mass(T_B[:m], T_A, M_T, Σ_T)
IR = -1 # No left and right matrix profile available
out[0] = P, I, -1, IR
k = T_A.shape[0] - m + 1
for i in range(1, l):
QT[1:] = (
QT[: k - 1] - T_B[i - 1] * T_A[: k - 1] + T_B[i - 1 + m] * T_A[-(k - 1) :]
)
QT[0] = QT_first[i]
D = core.calculate_distance_profile(m, QT, μ_Q[i], σ_Q[i], M_T, Σ_T)
if ignore_trivial:
zone_start = max(0, i - excl_zone)
zone_stop = min(k, i + excl_zone)
Returns
-------
P : float64
Matrix profile for the window with index equal to `start`
I : Tuple[int64, int64, int64]
Matrix profile index, left matrix profile index, and right matrix profile
index for the window with index equal to `start`. The left and right matrix
profile indices are automatically set to `-1` for self-joins (i.e., when
`ignore_trivial` is set to `True`.
"""
# Handle first subsequence, add exclusionary zone
if ignore_trivial:
P, I = stamp.mass(T_B[start : start + m], T_A, M_T, Σ_T, start, excl_zone)
PL, IL = stamp.mass(
T_B[start : start + m], T_A, M_T, Σ_T, start, excl_zone, left=True
)
PR, IR = stamp.mass(
T_B[start : start + m], T_A, M_T, Σ_T, start, excl_zone, right=True
)
else:
P, I = stamp.mass(T_B[start : start + m], T_A, M_T, Σ_T)
# No left and right matrix profile available
IL = -1
IR = -1
return P, (I, IL, IR)
l = n - m + 1
excl_zone = int(np.ceil(m / 4)) # See Definition 3 and Figure 3
M_T, Σ_T = core.compute_mean_std(T_A, m)
QT = core.sliding_dot_product(T_B[:m], T_A)
QT_first = core.sliding_dot_product(T_A[:m], T_B)
μ_Q, σ_Q = core.compute_mean_std(T_B, m)
out = np.empty((l, 4), dtype=object)
# Handle first subsequence, add exclusionary zone
if ignore_trivial:
P, I = stamp.mass(T_B[:m], T_A, M_T, Σ_T, 0, excl_zone)
PR, IR = stamp.mass(T_B[:m], T_A, M_T, Σ_T, 0, excl_zone, right=True)
else:
P, I = stamp.mass(T_B[:m], T_A, M_T, Σ_T)
IR = -1 # No left and right matrix profile available
out[0] = P, I, -1, IR
k = T_A.shape[0] - m + 1
for i in range(1, l):
QT[1:] = (
QT[: k - 1] - T_B[i - 1] * T_A[: k - 1] + T_B[i - 1 + m] * T_A[-(k - 1) :]
)
QT[0] = QT_first[i]
D = core.calculate_distance_profile(m, QT, μ_Q[i], σ_Q[i], M_T, Σ_T)
if ignore_trivial:
zone_start = max(0, i - excl_zone)
zone_stop = min(k, i + excl_zone)
D[zone_start:zone_stop] = np.inf
I = np.argmin(D)
P = D[I]