How to use statistics - 10 common examples

To help you get started, we’ve selected a few statistics examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Axelrod-Python / axelrod-dojo / src / axelrod_dojo / algorithms / genetic_algorithm.py View on Github external
print("Scoring Generation {}".format(self.generation))

        # Score population
        scores = self.score_all()
        results = list(zip(scores, range(len(scores))))
        results.sort(key=itemgetter(0), reverse=True)

        # Report
        if self.print_output:
            print("Generation", self.generation, "| Best Score:", results[0][0], repr(self.population[results[0][
                1]]))  # prints best result
        # Write the data
        # Note: if using this for analysis, for reproducability it may be useful to
        # pass type(opponent) for each of the opponents. This will allow verification of results post run

        row = [self.generation, mean(scores), pstdev(scores), results[0][0],
               repr(self.population[results[0][1]])]
        self.outputer.write_row(row)

        # Next Population
        indices_to_keep = [p for (s, p) in results[0: self.bottleneck]]

        self.subset_population(indices_to_keep)
        # Add mutants of the best players
        best_mutants = [p.copy() for p in self.population]
        for p in best_mutants:
            p.mutate()
            self.population.append(p)
        # Add random variants
        random_params = [self.params_class(**self.params_kwargs)
                         for _ in range(self.bottleneck // 2)]
        params_to_modify = [params.copy() for params in self.population]
github rrwick / Badread / test / test_qscore_model.py View on Github external
def one_cigar_test(self, cigar, dist_min, dist_max):
        qscores = []
        for _ in range(self.trials):
            q = self.model.get_qscore(cigar)
            q = badread.qscore_model.qscore_char_to_val(q)
            qscores.append(q)
        target_mean = (dist_min + dist_max) / 2
        target_stdev = math.sqrt(((dist_max - dist_min + 1) ** 2 - 1) / 12)
        self.assertAlmostEqual(statistics.mean(qscores), target_mean, delta=0.5)
        self.assertAlmostEqual(statistics.stdev(qscores), target_stdev, delta=0.5)
github creativecommons / cccatalog / src / cc_catalog_airflow / dags / util / popularity / test_math.py View on Github external
def test_gen_tsv():
    output_tsv = io.StringIO()
    percentiles = {'views': 60, 'global_usage_count': 10}
    pop_fields = ['views', 'global_usage_count']
    with open(os.path.join(RESOURCES, 'mock_popularity_dump.tsv'), 'r') as tsv:
        generate_popularity_tsv(tsv, output_tsv, percentiles, pop_fields)
        output_tsv.seek(0)
    scores = _parse_normalized_tsv(output_tsv)

    # Scores should be floats ranging from 0 to 100.
    for _, score in scores.items():
        assert 0 < score < 100
    # The score of the third row should be the average of the first and second
    assert statistics.mean([scores[0], scores[1]]) == scores[2]
github home-assistant / home-assistant / tests / components / statistics / test_sensor.py View on Github external
def setup_method(self, method):
        """Set up things to be run when tests are started."""
        self.hass = get_test_home_assistant()
        self.values = [17, 20, 15.2, 5, 3.8, 9.2, 6.7, 14, 6]
        self.count = len(self.values)
        self.min = min(self.values)
        self.max = max(self.values)
        self.total = sum(self.values)
        self.mean = round(sum(self.values) / len(self.values), 2)
        self.median = round(statistics.median(self.values), 2)
        self.deviation = round(statistics.stdev(self.values), 2)
        self.variance = round(statistics.variance(self.values), 2)
        self.change = round(self.values[-1] - self.values[0], 2)
        self.average_change = round(self.change / (len(self.values) - 1), 2)
        self.change_rate = round(self.average_change / (60 * (self.count - 1)), 2)
github datasciencecampus / pyGrams / tests / algorithms / test_tfidf_vv.py View on Github external
dice_score_bi, actual_bi, TP_bi, FN_bi, FP_bi = dice.get_score_bigrams(actual_terms)
        VV_TF_IDF_Tests.total_dice_bi += dice_score_bi

        VV_TF_IDF_Tests.dice_n.append(dice_score_n)
        VV_TF_IDF_Tests.dice_u.append(dice_score_u)
        VV_TF_IDF_Tests.dice_bi.append(dice_score_bi)

        if VV_TF_IDF_Tests.n_tests > 1:
            print(
                f" dice_n:  avg={statistics.mean(VV_TF_IDF_Tests.dice_n):0.3},"
                f" std={statistics.stdev(VV_TF_IDF_Tests.dice_n):0.3}")
            print(
                f" dice_u:  avg={statistics.mean(VV_TF_IDF_Tests.dice_u):0.3},"
                f" std={statistics.stdev(VV_TF_IDF_Tests.dice_u):0.3}")
            print(
                f" dice_bi: avg={statistics.mean(VV_TF_IDF_Tests.dice_bi):0.3},"
                f" std={statistics.stdev(VV_TF_IDF_Tests.dice_bi):0.3}")

        # shall we do try as well?
        VV_TF_IDF_Tests.n_tests += 1
        if dice_score_u < self.dice_threshold:
            tokenised_expected_terms_n = dice.expected_token_ngrams
            tokenised_expected_terms_u = dice.expected_token_unigrams
            tokenised_expected_terms_bi = dice.expected_token_bigrams

            self.fail(
                f'\n===================N-GRAMS============================\n'
                f'expected: {tokenised_expected_terms_n} \n'
github trekhleb / learn-python / src / standard_libraries / test_math.py View on Github external
def test_statistics():
    """Statistics.

    The statistics module calculates basic statistical properties (the mean, median,
    variance, etc.) of numeric data.
    """

    data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]

    assert statistics.mean(data) == 1.6071428571428572
    assert statistics.median(data) == 1.25
    assert statistics.variance(data) == 1.3720238095238095
github lschoe / mpyc / tests / test_statistics.py View on Github external
x = list(map(secfxp, x))
        self.assertAlmostEqual(mpc.run(mpc.output(mean(x))), 3, delta=1)
        self.assertAlmostEqual(mpc.run(mpc.output(median(x))), 3)
        self.assertAlmostEqual(mpc.run(mpc.output(mode(x))), 4)

        x = [1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6] * 100
        random.shuffle(x)
        x = list(map(lambda a: a * 2**-4, x))
        x = list(map(secfxp, x))
        self.assertAlmostEqual(mpc.run(mpc.output(mean(x))), (2**-4) * 10/3, delta=1)

        y = [1.75, 1.25, -0.25, 0.5, 1.25, -3.5] * 5
        random.shuffle(y)
        x = list(map(secfxp, y))
        self.assertAlmostEqual(mpc.run(mpc.output(mean(x))), statistics.mean(y), 4)
        self.assertAlmostEqual(mpc.run(mpc.output(variance(x))), statistics.variance(y), 2)
        self.assertAlmostEqual(mpc.run(mpc.output(stdev(x))), statistics.stdev(y), 3)
        self.assertAlmostEqual(mpc.run(mpc.output(pvariance(x))), statistics.pvariance(y), 2)
        self.assertAlmostEqual(mpc.run(mpc.output(pstdev(x))), statistics.pstdev(y), 3)
        self.assertAlmostEqual(mpc.run(mpc.output(median(x))), statistics.median(y), 4)

        x = list(map(secfxp, [1.0]*10))
        self.assertAlmostEqual(mpc.run(mpc.output(mode(x))), 1)
        k = mpc.options.sec_param
        mpc.options.sec_param = 1  # force no privacy case
        self.assertAlmostEqual(mpc.run(mpc.output(mode(x))), 1)
        mpc.options.sec_param = k
github polyswarm / polyswarmd / tests / test_event_message.py View on Github external
    latency_var = property(lambda msgs: statistics.pvariance(msgs.bundles))
    latency_avg = property(lambda msgs: statistics.mean(msgs.bundles))
github lschoe / mpyc / tests / test_statistics.py View on Github external
def test_statistics_error(self):
        self.assertRaises(statistics.StatisticsError, mean, [])
        self.assertRaises(statistics.StatisticsError, variance, [0])
        self.assertRaises(statistics.StatisticsError, stdev, [0])
        self.assertRaises(statistics.StatisticsError, pvariance, [])
        self.assertRaises(statistics.StatisticsError, pstdev, [])
        self.assertRaises(statistics.StatisticsError, mode, [])
        self.assertRaises(statistics.StatisticsError, median, [])
github lschoe / mpyc / tests / test_statistics.py View on Github external
def test_statistics_error(self):
        self.assertRaises(statistics.StatisticsError, mean, [])
        self.assertRaises(statistics.StatisticsError, variance, [0])
        self.assertRaises(statistics.StatisticsError, stdev, [0])
        self.assertRaises(statistics.StatisticsError, pvariance, [])
        self.assertRaises(statistics.StatisticsError, pstdev, [])
        self.assertRaises(statistics.StatisticsError, mode, [])
        self.assertRaises(statistics.StatisticsError, median, [])