Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_statistics_error(self):
self.assertRaises(statistics.StatisticsError, mean, [])
self.assertRaises(statistics.StatisticsError, variance, [0])
self.assertRaises(statistics.StatisticsError, stdev, [0])
self.assertRaises(statistics.StatisticsError, pvariance, [])
self.assertRaises(statistics.StatisticsError, pstdev, [])
self.assertRaises(statistics.StatisticsError, mode, [])
self.assertRaises(statistics.StatisticsError, median, [])
def test_statistics_error(self):
self.assertRaises(statistics.StatisticsError, mean, [])
self.assertRaises(statistics.StatisticsError, variance, [0])
self.assertRaises(statistics.StatisticsError, stdev, [0])
self.assertRaises(statistics.StatisticsError, pvariance, [])
self.assertRaises(statistics.StatisticsError, pstdev, [])
self.assertRaises(statistics.StatisticsError, mode, [])
self.assertRaises(statistics.StatisticsError, median, [])
r_list, g_list, b_list = separate_rgb_channels(rgb_array)
mean_rgb = [mean(r_list), mean(g_list), mean(b_list)]
median_rgb = [median(r_list), median(g_list), median(b_list)]
try:
mode_r = mode(r_list)
except statistics.StatisticsError:
mode_r = manual_mode(r_list)
try:
mode_g = mode(g_list)
except statistics.StatisticsError:
mode_g = manual_mode(g_list)
try:
mode_b = mode(b_list)
except statistics.StatisticsError:
mode_b = manual_mode(b_list)
mode_rgb = [mode_r, mode_g, mode_b]
return mean_rgb, mode_rgb, median_rgb
for each in result:
score = each[1]
if score == 100 and not sameTokenRemoved:
sameTokenRemoved = True
continue
scores.append(score)
average = statistics.mean(scores)
averages.append(average)
return statistics.mean(averages)
try:
similarity = fuzzy(allTokens)
print ('%s Tokens are %s%i%%%s similar to each other on an average' %
(info, green, similarity, end))
except statistics.StatisticsError:
print ('%s No CSRF protection to test' % bad)
quit()
def staticParts(allTokens):
strings = list(set(allTokens.copy()))
commonSubstrings = {}
for theString in strings:
strings.remove(theString)
for string in strings:
commonSubstring = longestCommonSubstring(theString, string)
if commonSubstring not in commonSubstrings:
commonSubstrings[commonSubstring] = []
if len(commonSubstring) > 2:
if theString not in commonSubstrings[commonSubstring]:
commonSubstrings[commonSubstring].append(theString)
:param evaluations: an iterable of iterables of Eval for a piece of evidence
"""
# The "diagnosticity" needs to capture how well the evidence separates/distinguishes the hypotheses. If we don't
# show a preference between consistent/inconsistent, STDDEV captures this intuition OK. However, in the future,
# we may want to favor evidence for which hypotheses are inconsistent. Additionally, we may want to calculate
# "marginal diagnosticity" which takes into the rest of the evidence.
# (1) calculate the consensus for each hypothesis
# (2) map N/A to neutral because N/A doesn't help determine consistency of the evidence
# (3) calculate the population standard deviation of the evidence. It's more reasonable to consider the set of
# hypotheses at a given time to be the population of hypotheses than as a "sample" (although it doesn't matter
# much because we're comparing across hypothesis sets of the same size)
na_neutral = map(mean_na_neutral_vote, evaluations) # pylint: disable=bad-builtin
try:
return statistics.pstdev(filter(None.__ne__, na_neutral)) # pylint: disable=bad-builtin
except statistics.StatisticsError:
return 0.0
self.cur_state[curr_AB[group_type]][char_offset] = block['B0']
self.cur_state[curr_AB[group_type]][char_offset+1] = block['B1']
if (char_offset is not None) and (blkid == "D") and (group_type == 0) and (block_version == 'A'):
self.cur_state[curr_AB[group_type]][char_offset+10] = block['B0']
self.cur_state[curr_AB[group_type]][char_offset+11] = block['B1']
if group_type in (0,2):
#print(blkid, group_type, curr_AB[group_type], block_version)
print(' '.join([str(x) for x in block.values()]))
#print('\n'.join([''.join(x) for x in self.prog_name]))
if blkid == "D":
print('\n'.join([''.join(x) for x in self.cur_state]).replace('\r','╳'))
group_type == None
char_offset = None
try:
self.PI = hex(statistics.mode(self.PIs))[2:]
except statistics.StatisticsError:
self.PI = hex(self.PIs[0])[2:]
self.callsign = picode.rdscall(self.PI)
print(self.callsign)
last_processed_metric = metric # fix for #21, to reuse values
last_all_values = all_values # fix for #21, to reuse values
last_max_value_found = max_value_found
else: # stats, compute on the whole population
if adjusted_metric == last_processed_metric: # fix for #21 - reuses values, thanks to sorting we know teh pure metric must have come just before
all_values = last_all_values
max_value_found = last_max_value_found
else:
all_values = [value for entity, value in metric_values()]
last_processed_metric = adjusted_metric # fix for 21. in case only stats functions are used, not the pure one.
last_all_values = all_values # fix for #21, same as above
stats_value = stats_cache.get(adjusted_metric, {}).get(lambda_name, None) # fix for #22 - used cached value for stats
if stats_value is None:
try:
stats_value = lambda_stats(all_values)
except statistics.StatisticsError as se:
print ("ERROR in %s: %s" % (metric, se))
continue
highest_values_found_by_metric[metric] = stats_value
if stats_value > max_allowed_value: # we found a violation
violation_count = violation_count + 1
print("STATS threshold violation for '%s': %f > %f" % (metric, stats_value, max_allowed_value))
else:
if bool(cmdline_arguments["--showHighest"]):
print("...........................................")
print("INFO(STATS): %s = %s (violation threshold is %s):" % (metric, stats_value, max_allowed_value))
print("...........................................")
#if mean is not None:
# stats_cache[metric] = {"AVG": mean, "MEDIAN": median, "STDEV": pstdev} # fix for #22 - used cached value for stats
#if verbose:
# print("Saved %s" % file_name)
def cycle_length_mode(self):
try:
return self._get_statistics_value(statistics.mode)
except statistics.StatisticsError:
return None
def stdev(d):
try:
return stdev_(d)
except StatisticsError:
return 0
def rating(self):
try:
return median(self.ratings.all().values_list('mark', flat=True))
except StatisticsError:
return "N/A"