How to use the sparse.random function in sparse

To help you get started, we’ve selected a few sparse examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github ahwillia / affinewarp / tests / test_transform.py View on Github external
def test_sparse_transform():

    # data should not be altered by transform before fitting the model.
    model = AffineWarping()
    data = sparse.random((10, 11, 12), density=.1)

    for dtype in (np.float64, np.float32, np.int64, np.int32):
        X = data.astype(dtype)
        model.fit(X, iterations=0, verbose=False)
        assert_array_equal(X.coords, model.transform(X).coords)
github pydata / sparse / tests / test_compressed.py View on Github external
def test_slicing_errors(index):
    s = sparse.random((2, 3, 4), density=0.5, format='gxcs')

    with pytest.raises(IndexError):
        s[index]
github pydata / sparse / tests / test_coo.py View on Github external
def test_sparsearray_elemwise(format):
    xs = sparse.random((3, 4), density=0.5, format=format)
    ys = sparse.random((3, 4), density=0.5, format=format)

    x = xs.todense()
    y = ys.todense()

    fs = sparse.elemwise(operator.add, xs, ys)
    assert isinstance(fs, COO)

    assert_eq(fs, x + y)
github pydata / sparse / tests / test_coo.py View on Github external
def test_binary_broadcasting(func, shape1, shape2):
    density1 = 1 if np.prod(shape1) == 1 else 0.5
    density2 = 1 if np.prod(shape2) == 1 else 0.5

    xs = sparse.random(shape1, density=density1)
    x = xs.todense()

    ys = sparse.random(shape2, density=density2)
    y = ys.todense()

    expected = func(x, y)
    actual = func(xs, ys)

    assert isinstance(actual, COO)
    assert_eq(expected, actual)

    assert np.count_nonzero(expected) == actual.nnz
github pydata / sparse / tests / test_compressed.py View on Github external
def test_reshape(a, b):
    s = sparse.random(a, density=0.5, format='gxcs')
    x = s.todense()

    assert_eq(x.reshape(b), s.reshape(b))
github pydata / sparse / tests / test_coo.py View on Github external
def test_failed_densification():
    import os
    from importlib import reload

    os.environ['SPARSE_AUTO_DENSIFY'] = '1'
    reload(sparse._settings)

    s = sparse.random((3, 4, 5), density=0.5)
    x = np.array(s)

    assert isinstance(x, np.ndarray)
    assert_eq(s, x)

    del os.environ['SPARSE_AUTO_DENSIFY']
    reload(sparse._settings)
github pydata / sparse / tests / test_coo.py View on Github external
def test_reshape_function():
    s = sparse.random((5, 3), density=0.5)
    x = s.todense()
    shape = (3, 5)

    s2 = np.reshape(s, shape)
    assert isinstance(s2, COO)
    assert_eq(s2, x.reshape(shape))
github pydata / sparse / tests / test_coo.py View on Github external
def random_sparse(request):
    dtype = request.param
    if np.issubdtype(dtype, np.integer):
        def data_rvs(n):
            return np.random.randint(-1000, 1000, n)
    else:
        data_rvs = None
    return sparse.random((20, 30, 40), density=.25, data_rvs=data_rvs).astype(dtype)
github pydata / sparse / tests / test_coo.py View on Github external
def test_resize(a, b):
    s = sparse.random(a, density=0.5)
    orig_size = s.size
    x = s.todense()
    x = np.resize(x, b)
    s.resize(b)
    temp = x.reshape(x.size)
    temp[orig_size:] = s.fill_value
    assert isinstance(s, sparse.SparseArray)
    assert_eq(x, s)
github pydata / sparse / tests / test_coo.py View on Github external
def test_gt():
    s = sparse.random((2, 3, 4), density=0.5)
    x = s.todense()

    m = x.mean()
    assert_eq(x > m, s > m)

    m = s.data[2]
    assert_eq(x > m, s > m)
    assert_eq(x >= m, s >= m)