How to use the scitime._utils.config function in scitime

To help you get started, we’ve selected a few scitime examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github nathan-toubiana / scitime / scitime / _model.py View on Github external
"""
        performs a random search on the NN meta algo to find the best params

        :param inputs: pd.DataFrame chosen as input
        :param outputs: pd.DataFrame chosen as output
        :param iterations: Number of parameter settings that are sampled
        :param save_model: boolean set to True if the model needs to be saved
        :return: best meta_algo with parameters
        :rtype: scikit learn RandomizedSearchCV object
        """
        X, y, cols, original_cols = self._transform_data(inputs, outputs)

        if self.meta_algo != 'NN':
            raise KeyError(f'''meta algo {self.meta_algo} not supported for random search''')

        parameter_space = config("random_search_params")
        meta_algo = MLPRegressor(max_iter=200)

        X_train, X_test, y_train, y_test \
            = train_test_split(X, y, test_size=0.20, random_state=42)

        X_train, X_test = self._scale_data(X_train, X_test, save_model)

        meta_algo = RandomizedSearchCV(meta_algo, parameter_space,
                                       n_iter=iterations, n_jobs=2)
        meta_algo.fit(X_train, y_train)

        if self.verbose >= 2:
            self.logger.info(f'''Best parameters found: {meta_algo.best_estimator_}''')

        return meta_algo
github nathan-toubiana / scitime / scitime / _model.py View on Github external
meta_algo_params = \
                    {'criterion': 'mse', 'max_depth': 100, 'max_features': 10}

        if generate_data:
            inputs, outputs, _ = self._generate_data()
        else:
            if csv_name is not None:
                inputs, outputs = self._transform_from_csv(csv_name=csv_name)

        if inputs is None or outputs is None:
            raise NameError('''no inputs / outputs found: please enter a csv name or set generate_data to True''')

        X, y, cols, original_cols = self._transform_data(inputs, outputs)

        # we decide on a meta-algorithm
        if self.meta_algo not in config('supported_meta_algos'):
            raise KeyError(f'''meta algo {self.meta_algo} currently not supported''')

        if self.meta_algo == 'RF':
            meta_algo = RandomForestRegressor(**meta_algo_params)
        if self.meta_algo == 'NN':
            meta_algo = MLPRegressor(**meta_algo_params)

        if self.verbose >= 2:
            self.logger.info(f'''Fitting {self.meta_algo} to estimate training durations for model {self.algo}''')

        # dividing into train/test
        X_train, X_test, y_train, y_test = \
            train_test_split(X, y, test_size=0.20, random_state=42)

        if self.meta_algo == 'NN':
            X_train_scaled, X_test_scaled = \
github nathan-toubiana / scitime / scitime / estimate.py View on Github external
def _fetch_algo_metadata(algo):
        """
        retrieves algo name, algo params and meta params from sklearn model

        :param algo: sklearn model
        :return: dictionary
        :rtype: dict
        """
        algo_name = type(algo).__name__
        algo_params = algo.get_params()
        params = config(algo_name)

        param_dic = {'name': algo_name,
                     'params': algo_params, 'config': params}

        return param_dic
github nathan-toubiana / scitime / scitime / _model.py View on Github external
def params(self):
        """
        retrieves the estimated algorithm's parameters if the algo is supported
        else, return KeyError

        :return: dictionary
        """
        if self.algo not in config("supported_algos"):
            raise KeyError(f'''{self.algo} not currently supported by this package''')
        return config(self.algo)
github nathan-toubiana / scitime / scitime / _model.py View on Github external
def params(self):
        """
        retrieves the estimated algorithm's parameters if the algo is supported
        else, return KeyError

        :return: dictionary
        """
        if self.algo not in config("supported_algos"):
            raise KeyError(f'''{self.algo} not currently supported by this package''')
        return config(self.algo)
github nathan-toubiana / scitime / _data.py View on Github external
import argparse
import numpy as np

from scitime._model import Model
from scitime._utils import config

SUPPORTED_META_ALGOS = config('supported_meta_algos')
SUPPORTED_ALGOS = config('supported_algos')

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='''Gather & Persist
    Data of model training runtimes''')

    parser.add_argument('--drop_rate', required=False, default=0.999,
                        help='''drop rate of number of data generated
                         (from all param combinations taken from _config.json).
                         Default is 0.999''')

    parser.add_argument('--meta_algo', required=False,
                        choices=SUPPORTED_META_ALGOS, help='''meta algo used to
                         fit the meta model (NN or RF) - default is RF''')

    parser.add_argument('--verbose', required=False, default=1,
github nathan-toubiana / scitime / _data.py View on Github external
import argparse
import numpy as np

from scitime._model import Model
from scitime._utils import config

SUPPORTED_META_ALGOS = config('supported_meta_algos')
SUPPORTED_ALGOS = config('supported_algos')

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='''Gather & Persist
    Data of model training runtimes''')

    parser.add_argument('--drop_rate', required=False, default=0.999,
                        help='''drop rate of number of data generated
                         (from all param combinations taken from _config.json).
                         Default is 0.999''')

    parser.add_argument('--meta_algo', required=False,
                        choices=SUPPORTED_META_ALGOS, help='''meta algo used to
                         fit the meta model (NN or RF) - default is RF''')

    parser.add_argument('--verbose', required=False, default=1,
                        help='verbose mode (0, 1, 2 or 3)')
github nathan-toubiana / scitime / scitime / estimate.py View on Github external
"""
        estimates the model's training time given that the fit starts

        :param X: np.array of inputs to be trained
        :param y: np.array of outputs to be trained
        (set to None if unsupervised algo)
        :param algo: algo whose runtime the user wants to predict
        :return: predicted runtime,
        low and high values of the confidence interval
        :rtype: tuple
        """
        # fetching sklearn model of the end user
        param_dic = self._fetch_algo_metadata(algo)
        algo_name = param_dic['name']

        if algo_name not in config("supported_algos"):
            raise NotImplementedError(f'''{algo_name} not currently supported by this package''')

        if self.meta_algo not in config('supported_meta_algos'):
            raise KeyError(f'''meta algo {self.meta_algo} currently not supported''')

        if self.verbose >= 3:
            self.logger.debug(f'''Fetching estimator: {self.meta_algo}_{algo_name}_estimator.pkl''')

        model_path = f'''{get_path("models")}/{self.meta_algo}_{algo_name}_estimator.pkl'''

        meta_estimator = joblib.load(model_path)

        # retrieving all parameters of interest:
        df = self._fetch_params(algo, X, y)

        # Transforming the inputs:
github nathan-toubiana / scitime / scitime / estimate.py View on Github external
:param X: np.array of inputs to be trained
        :param y: np.array of outputs to be trained
        (set to None if unsupervised algo)
        :param algo: algo whose runtime the user wants to predict
        :return: predicted runtime,
        low and high values of the confidence interval
        :rtype: tuple
        """
        # fetching sklearn model of the end user
        param_dic = self._fetch_algo_metadata(algo)
        algo_name = param_dic['name']

        if algo_name not in config("supported_algos"):
            raise NotImplementedError(f'''{algo_name} not currently supported by this package''')

        if self.meta_algo not in config('supported_meta_algos'):
            raise KeyError(f'''meta algo {self.meta_algo} currently not supported''')

        if self.verbose >= 3:
            self.logger.debug(f'''Fetching estimator: {self.meta_algo}_{algo_name}_estimator.pkl''')

        model_path = f'''{get_path("models")}/{self.meta_algo}_{algo_name}_estimator.pkl'''

        meta_estimator = joblib.load(model_path)

        # retrieving all parameters of interest:
        df = self._fetch_params(algo, X, y)

        # Transforming the inputs:
        if self.meta_algo == 'NN':
            meta_X = self._transform_params(algo, df, scaled=True)
        else:

scitime

Training time estimator for scikit-learn algorithms

BSD-3-Clause
Latest version published 4 years ago

Package Health Score

51 / 100
Full package analysis