How to use the scitime._model.Model function in scitime

To help you get started, we’ve selected a few scitime examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github nathan-toubiana / scitime / testing / test_train.py View on Github external
def setUp(self):
        self.rf_trainer_metarf = Model(drop_rate=1,
                                       verbose=3,
                                       algo='RandomForestRegressor',
                                       meta_algo='RF')

        self.svc_trainer_metarf = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='RF')

        self.km_trainer_metarf = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='RF')

        self.rf_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='RandomForestRegressor',
                                       meta_algo='NN')

        self.svc_trainer_metann = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='NN')

        self.km_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='NN')
github nathan-toubiana / scitime / testing / test_train.py View on Github external
def setUp(self):
        self.rf_trainer_metarf = Model(drop_rate=1,
                                       verbose=3,
                                       algo='RandomForestRegressor',
                                       meta_algo='RF')

        self.svc_trainer_metarf = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='RF')

        self.km_trainer_metarf = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='RF')

        self.rf_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='RandomForestRegressor',
                                       meta_algo='NN')

        self.svc_trainer_metann = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='NN')

        self.km_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='NN')
github nathan-toubiana / scitime / testing / test_train.py View on Github external
verbose=3,
                                       algo='RandomForestRegressor',
                                       meta_algo='RF')

        self.svc_trainer_metarf = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='RF')

        self.km_trainer_metarf = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='RF')

        self.rf_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='RandomForestRegressor',
                                       meta_algo='NN')

        self.svc_trainer_metann = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='NN')

        self.km_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='NN')
github nathan-toubiana / scitime / testing / test_train.py View on Github external
def setUp(self):
        self.rf_trainer_metarf = Model(drop_rate=1,
                                       verbose=3,
                                       algo='RandomForestRegressor',
                                       meta_algo='RF')

        self.svc_trainer_metarf = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='RF')

        self.km_trainer_metarf = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='RF')

        self.rf_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='RandomForestRegressor',
                                       meta_algo='NN')

        self.svc_trainer_metann = Model(drop_rate=1,
github nathan-toubiana / scitime / testing / test_train.py View on Github external
self.svc_trainer_metarf = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='RF')

        self.km_trainer_metarf = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='RF')

        self.rf_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='RandomForestRegressor',
                                       meta_algo='NN')

        self.svc_trainer_metann = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='NN')

        self.km_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='NN')
github nathan-toubiana / scitime / testing / test_train.py View on Github external
def setUp(self):
        self.rf_trainer_metarf = Model(drop_rate=1,
                                       verbose=3,
                                       algo='RandomForestRegressor',
                                       meta_algo='RF')

        self.svc_trainer_metarf = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='RF')

        self.km_trainer_metarf = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='RF')

        self.rf_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='RandomForestRegressor',
                                       meta_algo='NN')

        self.svc_trainer_metann = Model(drop_rate=1,
                                        verbose=3, algo='SVC', meta_algo='NN')

        self.km_trainer_metann = Model(drop_rate=1,
                                       verbose=3, algo='KMeans',
                                       meta_algo='NN')
github nathan-toubiana / scitime / _data.py View on Github external
if args.verbose is None:
        verbose = 1
    else:
        verbose = int(args.verbose)

    if args.meta_algo is None:
        meta_algo = 'RF'
    else:
        meta_algo = args.meta_algo

    if args.algo is None:
        algo = 'RandomForestRegressor'
    else:
        algo = args.algo

    m = Model(drop_rate=drop_rate, algo=algo,
              meta_algo=meta_algo, verbose=verbose)

    if args.generate_data:
        m._generate_data(write_csv=True)

    if args.fit is not None:
        csv_name = args.fit
        m.model_fit(generate_data=False,
                    csv_name=csv_name, save_model=args.save)

scitime

Training time estimator for scikit-learn algorithms

BSD-3-Clause
Latest version published 4 years ago

Package Health Score

51 / 100
Full package analysis