Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
elif vectorizer_cls == LDAVectorizer:
configs["vectorizer_string"] = 'lda'
elif vectorizer_cls == Doc2VecVectorizer:
configs["vectorizer_string"] = 'doc2vec'
else:
print("Unknown vectorizer; quitting")
quit()
# Monkey patch to avoid having to declare all our variables
def noop(item):
pass
Scaffold._warn_about_suspicious_changes = noop
# Add mongo observer for Sacred
ex.observers.append(MongoObserver.create(url=os.environ['MONGO_DB_URI'], db_name='altair_baseline_metrics'))
# Define the entrypoint
ex.main(lambda: run_model())
# Tell sacred about config items so they are logged
ex.run(config_updates=configs)
from sacred.optional import pymongo
from sklearn.externals.joblib import Parallel
from sklearn.externals.joblib import delayed
from sklearn.model_selection import ParameterGrid
from sklearn.utils import check_random_state
sys.path.append(path.dirname(path.dirname
(path.dirname(path.abspath(__file__)))))
from examples.contrast.predict_contrast_hierarchical\
import predict_contrast_hierarchical
multi_predict_task = Experiment('multi_predict_contrast_hierarchical',
ingredients=[predict_contrast_hierarchical])
collection = multi_predict_task.path
observer = MongoObserver.create(db_name='amensch', collection=collection)
multi_predict_task.observers.append(observer)
@multi_predict_task.config
def config():
n_jobs = 36
dropout_latent_list = [0.5]
latent_dim_list = [50]
shared_supervised_list = [False]
task_prob_list = [0.5]
alpha_list = [1e-4]
n_seeds = 10
verbose = 0
seed = 2
def single_run(config_updates=None, _seed=0):
config_updates['seed'] = _seed
@fmri_decompose.capture
def pre_run_hook(_run):
_run.info['parent_id'] = fmri_compare.observers[0].run_entry['_id']
_run.info['updated_params'] = config_updates
single_observer = MongoObserver.create(url='mongo')
fmri_decompose.pre_run_hooks = [pre_run_hook]
fmri_decompose.observers = [single_observer]
run = create_run(fmri_decompose, fmri_decompose_run.__name__,
config_updates)
run()
from os import path
from sacred import Experiment
from sacred.observers import MongoObserver
from sacred.optional import pymongo
from sklearn.externals.joblib import Parallel
from sklearn.externals.joblib import delayed
sys.path.append(path.dirname(path.dirname
(path.dirname(path.abspath(__file__)))))
from examples.components.decompose_rest import decompose_rest
multi_decompose_rest = Experiment('multi_decompose_rest',
ingredients=[decompose_rest])
observer = MongoObserver.create(db_name='amensch', collection='runs')
multi_decompose_rest.observers.append(observer)
@multi_decompose_rest.config
def config():
n_jobs = 1
n_components_list = [256]
alpha_list = [1e-4]
@decompose_rest.config
def config():
batch_size = 100
learning_rate = 0.92
method = 'gram'
reduction = 12
alpha = 1e-4 # Overriden
def single_run(config_updates, _id, master_id):
observer = MongoObserver.create(db_name='amensch',
collection=collection)
@predict_contrast.config
def config():
n_jobs = 1
from_loadings = True
projection = False
factored = False
loadings_dir = join(get_data_dirs()[0], 'pipeline', 'contrast',
'reduced')
verbose = 2
max_iter = 50
predict_contrast.observers = [observer]
run = predict_contrast._create_run(config_updates=config_updates)
from sklearn.externals.joblib import Parallel
from sklearn.externals.joblib import delayed
import numpy as np
from sklearn.model_selection import ParameterGrid
from sklearn.utils import check_random_state
sys.path.append(path.dirname(path.dirname
(path.dirname(path.abspath(__file__)))))
from examples.contrast.predict_contrast import predict_contrast
multi_predict_task = Experiment('multi_predict_contrast_factored',
ingredients=[predict_contrast])
collection = multi_predict_task.path
observer = MongoObserver.create(db_name='amensch', collection=collection)
multi_predict_task.observers.append(observer)
@multi_predict_task.config
def config():
n_jobs = 25
dropout_list = [0., 0.3, 0.6, 0.9]
latent_dim_list = [200]
alpha_list = [1e-4]
beta_list = [0]
fine_tune_list = [0]
activation_list = ['linear']
n_seeds = 10
early_stop = False
from sacred.observers import MongoObserver
from sacred.optional import pymongo
from sklearn.externals.joblib import Parallel
from sklearn.externals.joblib import delayed
from sklearn.model_selection import ParameterGrid
from sklearn.utils import check_random_state, shuffle
sys.path.append(path.dirname(path.dirname
(path.dirname(path.abspath(__file__)))))
from examples.contrast.predict_contrast import predict_contrast_exp
predict_contrast_multi_exp = Experiment('predict_contrast_train_size',
ingredients=[predict_contrast_exp])
collection = predict_contrast_multi_exp.path
observer = MongoObserver.create(db_name='amensch', collection=collection)
predict_contrast_multi_exp.observers.append(observer)
@predict_contrast_multi_exp.config
def config():
n_jobs = 24
n_seeds = 10
seed = 2
def single_run(config_updates, _id, master_id):
observer = MongoObserver.create(db_name='amensch', collection=collection)
predict_contrast_exp.observers = [observer]
@predict_contrast_exp.config
def config():
from sacred import Experiment
from sacred.observers import MongoObserver
from sacred.optional import pymongo
from sklearn.externals.joblib import Parallel
from sklearn.externals.joblib import delayed
from sklearn.utils import check_random_state, shuffle
sys.path.append(path.dirname(path.dirname
(path.dirname(path.abspath(__file__)))))
from examples.predict_contrast import predict_contrast_exp
predict_contrast_multi_exp = Experiment('predict_contrast_multi',
ingredients=[predict_contrast_exp])
collection = predict_contrast_multi_exp.path
observer = MongoObserver.create(db_name='amensch', collection=collection)
predict_contrast_multi_exp.observers.append(observer)
@predict_contrast_multi_exp.config
def config():
n_jobs = 24
n_seeds = 10
seed = 2
def single_run(config_updates, _id, master_id):
observer = MongoObserver.create(db_name='amensch', collection=collection)
predict_contrast_exp.observers = [observer]
@predict_contrast_exp.config
def config():