How to use the reliability.Distributions.Gamma_Distribution function in reliability

To help you get started, we’ve selected a few reliability examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github MatthewReid854 / reliability / reliability / Fitters.py View on Github external
Lognormal_Distribution(mu=self.Lognormal_3P_mu, sigma=self.Lognormal_3P_sigma, gamma=self.Lognormal_3P_gamma).PDF(xvals=xvals, label=r'Lognormal ($\mu , \sigma , \gamma$)')
        Normal_Distribution(mu=self.Normal_2P_mu, sigma=self.Normal_2P_sigma).PDF(xvals=xvals, label=r'Normal ($\mu , \sigma$)')
        if max(X) <= 1:  # condition for Beta Dist to be fitted
            Beta_Distribution(alpha=self.Beta_2P_alpha, beta=self.Beta_2P_beta).PDF(xvals=xvals, label=r'Beta ($\alpha , \beta$)')
        plt.legend()
        plt.xlim([xmin, xmax])
        plt.title('Probability Density Function')
        plt.xlabel('Data')
        plt.ylabel('Probability density')
        plt.legend()

        plt.subplot(122)  # CDF
        plt.bar(center, hist_cumulative * self._frac_fail, align='center', width=width, alpha=0.2, color='k', edgecolor='k')
        Weibull_Distribution(alpha=self.Weibull_2P_alpha, beta=self.Weibull_2P_beta).CDF(xvals=xvals, label=r'Weibull ($\alpha , \beta$)')
        Weibull_Distribution(alpha=self.Weibull_3P_alpha, beta=self.Weibull_3P_beta, gamma=self.Weibull_3P_gamma).CDF(xvals=xvals, label=r'Weibull ($\alpha , \beta , \gamma$)')
        Gamma_Distribution(alpha=self.Gamma_2P_alpha, beta=self.Gamma_2P_beta).CDF(xvals=xvals, label=r'Gamma ($\alpha , \beta$)')
        Gamma_Distribution(alpha=self.Gamma_3P_alpha, beta=self.Gamma_3P_beta, gamma=self.Gamma_3P_gamma).CDF(xvals=xvals, label=r'Gamma ($\alpha , \beta , \gamma$)')
        Exponential_Distribution(Lambda=self.Expon_1P_lambda).CDF(xvals=xvals, label=r'Exponential ($\lambda$)')
        Exponential_Distribution(Lambda=self.Expon_2P_lambda, gamma=self.Expon_2P_gamma).CDF(xvals=xvals, label=r'Exponential ($\lambda , \gamma$)')
        Lognormal_Distribution(mu=self.Lognormal_2P_mu, sigma=self.Lognormal_2P_sigma).CDF(xvals=xvals, label=r'Lognormal ($\mu , \sigma$)')
        Lognormal_Distribution(mu=self.Lognormal_3P_mu, sigma=self.Lognormal_3P_sigma, gamma=self.Lognormal_3P_gamma).CDF(xvals=xvals, label=r'Lognormal ($\mu , \sigma , \gamma$)')
        Normal_Distribution(mu=self.Normal_2P_mu, sigma=self.Normal_2P_sigma).CDF(xvals=xvals, label=r'Normal ($\mu , \sigma$)')
        if max(X) <= 1:  # condition for Beta Dist to be fitted
            Beta_Distribution(alpha=self.Beta_2P_alpha, beta=self.Beta_2P_beta).CDF(xvals=xvals, label=r'Beta ($\alpha , \beta$)')
        plt.legend()
        plt.xlim([xmin, xmax])
        plt.title('Cumulative Distribution Function')
        plt.xlabel('Data')
        plt.ylabel('Cumulative probability density')
        plt.suptitle('Histogram plot of each fitted distribution')
        plt.legend()
github MatthewReid854 / reliability / reliability / Probability_plotting.py View on Github external
This version of a PP_Plot is the fully parametric form in which we plot one distribution against another distribution. There is also a semi-parametric form offered in PP_plot_semiparametric.

    Inputs:
    X_dist - a probability distribution. The CDF of this distribution will be plotted along the X-axis.
    Y_dist - a probability distribution. The CDF of this distribution will be plotted along the Y-axis.
    y_quantile_lines - starting points for the trace lines to find the X equivalent of the Y-quantile. Optional input. Must be list or array.
    x_quantile_lines - starting points for the trace lines to find the Y equivalent of the X-quantile. Optional input. Must be list or array.
    show_diagonal_line - True/False. Default is False. If True the diagonal line will be shown on the plot.

    Outputs:
    The PP_plot is the only output. Use plt.show() to show it.
    '''

    if X_dist is None or Y_dist is None:
        raise ValueError('X_dist and Y_dist must both be specified as probability distributions generated using the Distributions module')
    if type(X_dist) not in [Weibull_Distribution, Normal_Distribution, Lognormal_Distribution, Exponential_Distribution, Gamma_Distribution, Beta_Distribution] or type(Y_dist) not in [Weibull_Distribution, Normal_Distribution, Lognormal_Distribution, Exponential_Distribution, Gamma_Distribution, Beta_Distribution]:
        raise ValueError('Invalid probability distribution. X_dist and Y_dist must both be specified as probability distributions generated using the Distributions module')

    # extract certain keyword arguments or specify them if they are not set
    if 'color' in kwargs:
        color = kwargs.pop('color')
    else:
        color = 'k'
    if 'marker' in kwargs:
        marker = kwargs.pop('marker')
    else:
        marker = '.'

    # generate plotting limits and create the PP_plot line
    dist_X_b01 = X_dist.quantile(0.01)
    dist_Y_b01 = Y_dist.quantile(0.01)
    dist_X_b99 = X_dist.quantile(0.99)
github MatthewReid854 / reliability / reliability / Probability_plotting.py View on Github external
xvals = np.logspace(-2, np.ceil(np.log10(max(failures))) + 1, 1000)

    if __fitted_dist_params is not None:
        if __fitted_dist_params.gamma > 0:
            fit_gamma = True

    if fit_gamma is False:
        if __fitted_dist_params is not None:
            alpha = __fitted_dist_params.alpha
            beta = __fitted_dist_params.beta
        else:
            from reliability.Fitters import Fit_Gamma_2P
            fit = Fit_Gamma_2P(failures=failures, right_censored=right_censored, show_probability_plot=False, print_results=False)
            alpha = fit.alpha
            beta = fit.beta
        gf = Gamma_Distribution(alpha=alpha, beta=beta).CDF(show_plot=False, xvals=xvals)
        if 'label' in kwargs:
            label = kwargs.pop('label')
        else:
            label = str('Fitted Gamma_2P (α=' + str(round_to_decimals(alpha, dec)) + ', β=' + str(round_to_decimals(beta, dec)) + ')')
        if 'color' in kwargs:
            color = kwargs.pop('color')
            data_color = color
        else:
            color = 'red'
            data_color = 'k'
        plt.xlabel('Time')
    elif fit_gamma is True:
        if __fitted_dist_params is not None:
            alpha = __fitted_dist_params.alpha
            beta = __fitted_dist_params.beta
            gamma = __fitted_dist_params.gamma
github MatthewReid854 / reliability / reliability / Fitters.py View on Github external
plt.figure(figsize=(14, 6))
        plt.subplot(121)  # PDF

        # make this histogram. Can't use plt.hist due to need to scale the heights when there's censored data
        num_bins = min(int(len(X) / 2), 30)
        hist, bins = np.histogram(X, bins=num_bins, density=True)
        hist_cumulative = np.cumsum(hist) / sum(hist)
        width = np.diff(bins)
        center = (bins[:-1] + bins[1:]) / 2
        plt.bar(center, hist * self._frac_fail, align='center', width=width, alpha=0.2, color='k', edgecolor='k')

        Weibull_Distribution(alpha=self.Weibull_2P_alpha, beta=self.Weibull_2P_beta).PDF(xvals=xvals, label=r'Weibull ($\alpha , \beta$)')
        Weibull_Distribution(alpha=self.Weibull_3P_alpha, beta=self.Weibull_3P_beta, gamma=self.Weibull_3P_gamma).PDF(xvals=xvals, label=r'Weibull ($\alpha , \beta , \gamma$)')
        Gamma_Distribution(alpha=self.Gamma_2P_alpha, beta=self.Gamma_2P_beta).PDF(xvals=xvals, label=r'Gamma ($\alpha , \beta$)')
        Gamma_Distribution(alpha=self.Gamma_3P_alpha, beta=self.Gamma_3P_beta, gamma=self.Gamma_3P_gamma).PDF(xvals=xvals, label=r'Gamma ($\alpha , \beta , \gamma$)')
        Exponential_Distribution(Lambda=self.Expon_1P_lambda).PDF(xvals=xvals, label=r'Exponential ($\lambda$)')
        Exponential_Distribution(Lambda=self.Expon_2P_lambda, gamma=self.Expon_2P_gamma).PDF(xvals=xvals, label=r'Exponential ($\lambda , \gamma$)')
        Lognormal_Distribution(mu=self.Lognormal_2P_mu, sigma=self.Lognormal_2P_sigma).PDF(xvals=xvals, label=r'Lognormal ($\mu , \sigma$)')
        Lognormal_Distribution(mu=self.Lognormal_3P_mu, sigma=self.Lognormal_3P_sigma, gamma=self.Lognormal_3P_gamma).PDF(xvals=xvals, label=r'Lognormal ($\mu , \sigma , \gamma$)')
        Normal_Distribution(mu=self.Normal_2P_mu, sigma=self.Normal_2P_sigma).PDF(xvals=xvals, label=r'Normal ($\mu , \sigma$)')
        if max(X) <= 1:  # condition for Beta Dist to be fitted
            Beta_Distribution(alpha=self.Beta_2P_alpha, beta=self.Beta_2P_beta).PDF(xvals=xvals, label=r'Beta ($\alpha , \beta$)')
        plt.legend()
        plt.xlim([xmin, xmax])
        plt.title('Probability Density Function')
        plt.xlabel('Data')
        plt.ylabel('Probability density')
        plt.legend()

        plt.subplot(122)  # CDF
        plt.bar(center, hist_cumulative * self._frac_fail, align='center', width=width, alpha=0.2, color='k', edgecolor='k')
github MatthewReid854 / reliability / reliability / Fitters.py View on Github external
Normal_Distribution(mu=self.Normal_2P_mu, sigma=self.Normal_2P_sigma).PDF(xvals=xvals, label=r'Normal ($\mu , \sigma$)')
        if max(X) <= 1:  # condition for Beta Dist to be fitted
            Beta_Distribution(alpha=self.Beta_2P_alpha, beta=self.Beta_2P_beta).PDF(xvals=xvals, label=r'Beta ($\alpha , \beta$)')
        plt.legend()
        plt.xlim([xmin, xmax])
        plt.title('Probability Density Function')
        plt.xlabel('Data')
        plt.ylabel('Probability density')
        plt.legend()

        plt.subplot(122)  # CDF
        plt.bar(center, hist_cumulative * self._frac_fail, align='center', width=width, alpha=0.2, color='k', edgecolor='k')
        Weibull_Distribution(alpha=self.Weibull_2P_alpha, beta=self.Weibull_2P_beta).CDF(xvals=xvals, label=r'Weibull ($\alpha , \beta$)')
        Weibull_Distribution(alpha=self.Weibull_3P_alpha, beta=self.Weibull_3P_beta, gamma=self.Weibull_3P_gamma).CDF(xvals=xvals, label=r'Weibull ($\alpha , \beta , \gamma$)')
        Gamma_Distribution(alpha=self.Gamma_2P_alpha, beta=self.Gamma_2P_beta).CDF(xvals=xvals, label=r'Gamma ($\alpha , \beta$)')
        Gamma_Distribution(alpha=self.Gamma_3P_alpha, beta=self.Gamma_3P_beta, gamma=self.Gamma_3P_gamma).CDF(xvals=xvals, label=r'Gamma ($\alpha , \beta , \gamma$)')
        Exponential_Distribution(Lambda=self.Expon_1P_lambda).CDF(xvals=xvals, label=r'Exponential ($\lambda$)')
        Exponential_Distribution(Lambda=self.Expon_2P_lambda, gamma=self.Expon_2P_gamma).CDF(xvals=xvals, label=r'Exponential ($\lambda , \gamma$)')
        Lognormal_Distribution(mu=self.Lognormal_2P_mu, sigma=self.Lognormal_2P_sigma).CDF(xvals=xvals, label=r'Lognormal ($\mu , \sigma$)')
        Lognormal_Distribution(mu=self.Lognormal_3P_mu, sigma=self.Lognormal_3P_sigma, gamma=self.Lognormal_3P_gamma).CDF(xvals=xvals, label=r'Lognormal ($\mu , \sigma , \gamma$)')
        Normal_Distribution(mu=self.Normal_2P_mu, sigma=self.Normal_2P_sigma).CDF(xvals=xvals, label=r'Normal ($\mu , \sigma$)')
        if max(X) <= 1:  # condition for Beta Dist to be fitted
            Beta_Distribution(alpha=self.Beta_2P_alpha, beta=self.Beta_2P_beta).CDF(xvals=xvals, label=r'Beta ($\alpha , \beta$)')
        plt.legend()
        plt.xlim([xmin, xmax])
        plt.title('Cumulative Distribution Function')
        plt.xlabel('Data')
        plt.ylabel('Cumulative probability density')
        plt.suptitle('Histogram plot of each fitted distribution')
        plt.legend()
github MatthewReid854 / reliability / reliability / Other_functions.py View on Github external
elif dist_name == 'Lognormal_2P':
                ranked_distributions_objects.append(Lognormal_Distribution(mu=fitted_results.Lognormal_2P_mu, sigma=fitted_results.Lognormal_2P_sigma))
                ranked_distributions_labels.append(str('Lognormal_2P (μ=' + str(round(fitted_results.Lognormal_2P_mu, sigfig)) + ',σ=' + str(round(fitted_results.Lognormal_2P_sigma, sigfig)) + ')'))
            elif dist_name == 'Exponential_1P':
                ranked_distributions_objects.append(Exponential_Distribution(Lambda=fitted_results.Expon_1P_lambda))
                ranked_distributions_labels.append(str('Exponential_1P (lambda=' + str(round(fitted_results.Expon_1P_lambda, sigfig)) + ')'))
            elif dist_name == 'Beta_2P':
                ranked_distributions_objects.append(Beta_Distribution(alpha=fitted_results.Beta_2P_alpha, beta=fitted_results.Beta_2P_beta))
                ranked_distributions_labels.append(str('Beta_2P (α=' + str(round(fitted_results.Beta_2P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Beta_2P_beta, sigfig)) + ')'))

            if include_location_shifted is True:
                if dist_name == 'Weibull_3P':
                    ranked_distributions_objects.append(Weibull_Distribution(alpha=fitted_results.Weibull_3P_alpha, beta=fitted_results.Weibull_3P_beta, gamma=fitted_results.Weibull_3P_gamma))
                    ranked_distributions_labels.append(str('Weibull_3P (α=' + str(round(fitted_results.Weibull_3P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Weibull_3P_beta, sigfig)) + ',γ=' + str(round(fitted_results.Weibull_3P_gamma, sigfig)) + ')'))
                elif dist_name == 'Gamma_3P':
                    ranked_distributions_objects.append(Gamma_Distribution(alpha=fitted_results.Gamma_3P_alpha, beta=fitted_results.Gamma_3P_beta, gamma=fitted_results.Gamma_3P_gamma))
                    ranked_distributions_labels.append(str('Gamma_3P (α=' + str(round(fitted_results.Gamma_3P_alpha, sigfig)) + ',β=' + str(round(fitted_results.Gamma_3P_beta, sigfig)) + ',γ=' + str(round(fitted_results.Gamma_3P_gamma, sigfig)) + ')'))
                elif dist_name == 'Lognormal_3P':
                    ranked_distributions_objects.append(Lognormal_Distribution(mu=fitted_results.Lognormal_3P_mu, sigma=fitted_results.Lognormal_3P_sigma, gamma=fitted_results.Lognormal_3P_gamma))
                    ranked_distributions_labels.append(str('Lognormal_3P (μ=' + str(round(fitted_results.Lognormal_3P_mu, sigfig)) + ',σ=' + str(round(fitted_results.Lognormal_3P_sigma, sigfig)) + ',γ=' + str(round(fitted_results.Lognormal_3P_gamma, sigfig)) + ')'))
                elif dist_name == 'Exponential_2P':
                    ranked_distributions_objects.append(Exponential_Distribution(Lambda=fitted_results.Expon_1P_lambda, gamma=fitted_results.Expon_2P_gamma))
                    ranked_distributions_labels.append(str('Exponential_1P (lambda=' + str(round(fitted_results.Expon_1P_lambda, sigfig)) + ',γ=' + str(round(fitted_results.Expon_2P_gamma, sigfig)) + ')'))

        number_of_distributions_fitted = len(ranked_distributions_objects)
        self.results = ranked_distributions_objects
        self.most_similar_distribution = ranked_distributions_objects[0]
        if print_results is True:
            print('The input distribution was:')
            print(distribution.param_title_long)
            if number_of_distributions_fitted < number_of_distributions_to_show:
                number_of_distributions_to_show = number_of_distributions_fitted
github MatthewReid854 / reliability / reliability / Fitters.py View on Github external
else:
            raise ValueError('Invalid input to sort_by. Options are BIC or AICc. Default is BIC')
        df3 = df2.set_index('Distribution').fillna('')
        if self.Beta_2P_BIC == 0:  # remove beta if it was not fitted (due to data being outside of 0 to 1 range)
            df3 = df3.drop('Beta_2P', axis=0)
        self.results = df3

        # creates a distribution object of the best fitting distribution and assigns its name
        best_dist = df3.index.values[0]
        self.best_distribution_name = best_dist
        if best_dist == 'Weibull_2P':
            self.best_distribution = Weibull_Distribution(alpha=self.Weibull_2P_alpha, beta=self.Weibull_2P_beta)
        elif best_dist == 'Weibull_3P':
            self.best_distribution = Weibull_Distribution(alpha=self.Weibull_3P_alpha, beta=self.Weibull_3P_beta, gamma=self.Weibull_3P_gamma)
        elif best_dist == 'Gamma_2P':
            self.best_distribution = Gamma_Distribution(alpha=self.Gamma_2P_alpha, beta=self.Gamma_2P_beta)
        elif best_dist == 'Gamma_3P':
            self.best_distribution = Gamma_Distribution(alpha=self.Gamma_3P_alpha, beta=self.Gamma_3P_beta, gamma=self.Gamma_3P_gamma)
        elif best_dist == 'Lognormal_2P':
            self.best_distribution = Lognormal_Distribution(mu=self.Lognormal_2P_mu, sigma=self.Lognormal_2P_sigma)
        elif best_dist == 'Lognormal_3P':
            self.best_distribution = Lognormal_Distribution(mu=self.Lognormal_3P_mu, sigma=self.Lognormal_3P_sigma, gamma=self.Lognormal_3P_gamma)
        elif best_dist == 'Exponential_1P':
            self.best_distribution = Exponential_Distribution(Lambda=self.Expon_1P_lambda)
        elif best_dist == 'Exponential_2P':
            self.best_distribution = Exponential_Distribution(Lambda=self.Expon_2P_lambda, gamma=self.Expon_2P_gamma)
        elif best_dist == 'Normal_2P':
            self.best_distribution = Normal_Distribution(mu=self.Normal_2P_mu, sigma=self.Normal_2P_sigma)
        elif best_dist == 'Beta_2P':
            self.best_distribution = Beta_Distribution(alpha=self.Beta_2P_alpha, beta=self.Beta_2P_beta)

        # print the results