How to use the pyts.utils.segmentation function in pyts

To help you get started, we’ve selected a few pyts examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github johannfaouzi / pyts / pyts / image / mtf.py View on Github external
np.place(sum_mtm, sum_mtm == 0, 1)
        X_mtm /= sum_mtm[:, :, None]

        X_mtf = _markov_transition_field(
            X_binned, X_mtm, n_samples, n_timestamps, self.n_bins
        )

        window_size, remainder = divmod(n_timestamps, image_size)
        if remainder == 0:
            X_amtf = np.reshape(
                X_mtf, (n_samples, image_size, window_size,
                        image_size, window_size)
            ).mean(axis=(2, 4))
        else:
            window_size += 1
            start, end, _ = segmentation(
                n_timestamps, window_size, self.overlapping, image_size
            )
            X_amtf = _aggregated_markov_transition_field(
                X_mtf, n_samples, image_size, start, end
            )
        if self.flatten:
            return X_amtf.reshape(n_samples, -1)
        return X_amtf
github johannfaouzi / pyts / pyts / approximation / paa.py View on Github external
----------
        X : array-like, shape = (n_samples, n_timestamps)

        Returns
        -------
        X_new : array, shape = (n_samples, n_timestamps_new)

        """
        X = check_array(X)
        n_samples, n_timestamps = X.shape

        window_size, output_size = self._check_params(n_timestamps)
        if window_size == 1:
            return X
        else:
            start, end, n_timestamps_new = segmentation(
                n_timestamps, window_size, self.overlapping, output_size
            )
            X_paa = _paa(X, n_samples, n_timestamps,
                         start, end, n_timestamps_new)
            return X_paa
github johannfaouzi / pyts / pyts / approximation / approximation.py View on Github external
Transformed data.

        """
        # Check input data
        X = check_array(X)

        # Shape parameters
        n_samples, n_features = X.shape

        # Check parameters and compute window_size if output_size is given
        window_size = self._check_params(n_samples, n_features)

        if window_size == 1:
            return X
        else:
            start, end, size = segmentation(n_features, window_size,
                                            self.overlapping, self.output_size)
            return np.apply_along_axis(self._paa, 1, X, start, end, size)
github johannfaouzi / pyts / pyts / image / image.py View on Github external
# Compute Markov Transition Field
        MTF = np.zeros((ts_size, ts_size))
        for i in range(non_zero_rows.size):
            for j in range(non_zero_rows.size):
                MTF[np.meshgrid(list_values[i], list_values[j])] = MTM[i, j]

        # Compute Aggregated Markov Transition Field
        if remainder == 0:
            return np.reshape(MTF,
                              (image_size, window_size,
                               image_size, window_size)
                              ).mean(axis=(1, 3))
        else:
            window_size += 1
            start, end, _ = segmentation(ts_size, window_size, overlapping)
            AMTF = np.zeros((image_size, image_size))
            for i in range(image_size):
                for j in range(image_size):
                    AMTF[i, j] = MTF[start[i]:end[i], start[j]:end[j]].mean()

            return AMTF