Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
for i in range(n_windows)])
X_window = X_window.reshape(n_samples * n_windows, -1, order='F')
else:
n_windows = n_features // self.window_size
remainder = n_features % self.window_size
if remainder == 0:
window_idx = np.array_split(np.arange(0, n_features),
n_windows)
else:
split_idx = np.arange(self.window_size,
n_windows * (self.window_size + 1),
self.window_size)
window_idx = np.split(np.arange(0, n_features), split_idx)[:-1]
X_window = X[:, window_idx].reshape(n_samples * n_windows, -1)
sfa = SFA(self.n_coefs, False, self.norm_mean,
self.norm_std, self.n_bins, self.quantiles,
self.variance_selection, self.variance_threshold)
count = CountVectorizer(ngram_range=(1, 1))
X_sfa = sfa.fit_transform(X_window)
X_sfa = np.apply_along_axis(lambda x: ''.join(x),
1,
X_sfa).reshape(n_samples, -1)
word_size = len(X_sfa[0, 0])
if word_size == 1:
count.set_params(tokenizer=self._tok)
if self.numerosity_reduction:
X_sfa = np.apply_along_axis(numerosity_reduction, 1, X_sfa)
else:
X_sfa = np.apply_along_axis(lambda x: ' '.join(x), 1, X_sfa)
count.fit(X_sfa)
order='F')
else:
n_windows = n_features // window_size
remainder = n_features % window_size
if remainder == 0:
window_idx = np.array_split(np.arange(0, n_features),
n_windows)
else:
split_idx = np.arange(window_size,
(n_windows + 1) * window_size,
window_size)
window_idx = np.split(np.arange(0, n_features),
split_idx)[:-1]
X_window = X[:, window_idx].reshape(n_samples * n_windows, -1)
sfa = SFA(self.n_coefs, True, self.norm_mean,
self.norm_std, self.n_bins, 'entropy',
self.variance_selection, self.variance_threshold)
count = CountVectorizer(ngram_range=(1, 2))
y_window = np.repeat(y_ind, n_windows)
X_sfa = sfa.fit_transform(X_window, y_window)
X_sfa = np.apply_along_axis(lambda x: ''.join(x),
1,
X_sfa).reshape(n_samples, -1)
word_size = len(X_sfa[0, 0])
if word_size == 1:
count.set_params(tokenizer=self._tok)
X_sfa = np.apply_along_axis(lambda x: ' '.join(x), 1, X_sfa)
tf = count.fit_transform(X_sfa)
_, pval = chi2(tf, y_ind)
for i in range(n_windows)])
X_window = X_window.reshape(n_samples * n_windows, -1, order='F')
else:
n_windows = n_features // self.window_size
remainder = n_features % self.window_size
if remainder == 0:
window_idx = np.array_split(np.arange(0, n_features),
n_windows)
else:
split_idx = np.arange(self.window_size,
n_windows * (self.window_size + 1),
self.window_size)
window_idx = np.split(np.arange(0, n_features), split_idx)[:-1]
X_window = X[:, window_idx].reshape(n_samples * n_windows, -1)
sfa = SFA(self.n_coefs, False, self.norm_mean,
self.norm_std, self.n_bins, self.quantiles,
self.variance_selection, self.variance_threshold)
count = CountVectorizer(ngram_range=(1, 1))
X_sfa = sfa.fit_transform(X_window)
X_sfa = np.apply_along_axis(lambda x: ''.join(x),
1,
X_sfa).reshape(n_samples, -1)
word_size = len(X_sfa[0, 0])
if word_size == 1:
count.set_params(tokenizer=self._tok)
if self.numerosity_reduction:
X_sfa = np.apply_along_axis(numerosity_reduction, 1, X_sfa)
else:
X_sfa = np.apply_along_axis(lambda x: ' '.join(x), 1, X_sfa)
tf = count.fit_transform(X_sfa)
for i in range(n_windows)])
X_window = X_window.reshape(n_samples * n_windows, -1, order='F')
else:
n_windows = n_features // self.window_size
remainder = n_features % self. window_size
if remainder == 0:
window_idx = np.array_split(np.arange(0, n_features),
n_windows)
else:
split_idx = np.arange(self.window_size,
n_windows * (self.window_size + 1),
self.window_size)
window_idx = np.split(np.arange(0, n_features), split_idx)[:-1]
X_window = X[:, window_idx].reshape(n_samples * n_windows, -1)
sfa = SFA(self.n_coefs, False, self.norm_mean,
self.norm_std, self.n_bins, self.quantiles,
self.variance_selection, self.variance_threshold)
tfidf = TfidfVectorizer(ngram_range=(1, 1), smooth_idf=self.smooth_idf,
sublinear_tf=self.sublinear_tf)
X_sfa = sfa.fit_transform(X_window)
X_sfa = np.apply_along_axis(lambda x: ''.join(x),
1,
X_sfa).reshape(n_samples, -1)
word_size = len(X_sfa[0, 0])
if word_size == 1:
tfidf.set_params(tokenizer=self._tok)
if self.numerosity_reduction:
X_sfa = np.apply_along_axis(numerosity_reduction, 1, X_sfa)
else:
X_sfa = np.apply_along_axis(lambda x: ' '.join(x), 1, X_sfa)