How to use the pysteps.io.read_timeseries function in pysteps

To help you get started, we’ve selected a few pysteps examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pySTEPS / pysteps / examples / LK_buffer_mask.py View on Github external
root_path = data_source["root_path"]
path_fmt = data_source["path_fmt"]
fn_pattern = data_source["fn_pattern"]
fn_ext = data_source["fn_ext"]
importer_name = data_source["importer"]
importer_kwargs = data_source["importer_kwargs"]
timestep = data_source["timestep"]

# Find the two input files from the archive
fns = io.archive.find_by_date(
    date, root_path, path_fmt, fn_pattern, fn_ext, timestep=5, num_prev_files=1
)

# Read the radar composites
importer = io.get_method(importer_name, "importer")
R, quality, metadata = io.read_timeseries(fns, importer, **importer_kwargs)

del quality  # Not used

###############################################################################
# Preprocess the data
# ~~~~~~~~~~~~~~~~~~~

# Convert to mm/h
R, metadata = conversion.to_rainrate(R, metadata)

# Keep the reference frame in mm/h and its mask (for plotting purposes)
ref_mm = R[0, :, :].copy()
mask = np.ones(ref_mm.shape)
mask[~np.isnan(ref_mm)] = np.nan

# Log-transform the data [dBR]
github pySTEPS / pysteps / examples / plot_steps_nowcast.py View on Github external
root_path = rcparams.data_sources[data_source]["root_path"]
path_fmt = rcparams.data_sources[data_source]["path_fmt"]
fn_pattern = rcparams.data_sources[data_source]["fn_pattern"]
fn_ext = rcparams.data_sources[data_source]["fn_ext"]
importer_name = rcparams.data_sources[data_source]["importer"]
importer_kwargs = rcparams.data_sources[data_source]["importer_kwargs"]
timestep = rcparams.data_sources[data_source]["timestep"]

# Find the radar files in the archive
fns = io.find_by_date(
    date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=2
)

# Read the data from the archive
importer = io.get_method(importer_name, "importer")
R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs)

# Convert to rain rate
R, metadata = conversion.to_rainrate(R, metadata)

# Upscale data to 2 km to limit memory usage
R, metadata = dimension.aggregate_fields_space(R, metadata, 2000)

# Plot the rainfall field
plot_precip_field(R[-1, :, :], geodata=metadata)

# Log-transform the data to unit of dBR, set the threshold to 0.1 mm/h,
# set the fill value to -15 dBR
R, metadata = transformation.dB_transform(R, metadata, threshold=0.1, zerovalue=-15.0)

# Set missing values with the fill value
R[~np.isfinite(R)] = -15.0
github pySTEPS / pysteps / examples / run_deterministic_nowcast.py View on Github external
UV=UV,
                motion_plot=stp.rcparams.plot.motion_plot,
                geodata=metadata,
                colorscale=stp.rcparams.plot.colorscale,
                plotanimation=True, savefig=False,
                path_outputs=stp.rcparams.outputs.path_outputs)

# Forecast verification
print("Forecast verification...")

## find the verifying observations
input_files_verif = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
                                        ds.fn_ext, ds.timestep, 0, n_lead_times)

## read observations
R_obs, _, metadata_obs = stp.io.read_timeseries(input_files_verif, importer, **ds.importer_kwargs)
R_obs = R_obs[1:,:,:]

## if necessary, convert to rain rates [mm/h]
R_obs, metadata_obs = converter(R_obs, metadata_obs)

## threshold the data
R_obs[R_obs
github pySTEPS / pysteps / examples / run_ensemble_nowcast.py View on Github external
UV=UV,
                motion_plot=stp.rcparams.plot.motion_plot,
                geodata=metadata,
                colorscale=stp.rcparams.plot.colorscale,
                plotanimation=True, savefig=False,
                path_outputs=stp.rcparams.outputs.path_outputs)

# Forecast verification
print("Forecast verification...")

## find the verifying observations
input_files_verif = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
                                        ds.fn_ext, ds.timestep, 0, n_lead_times)

## read observations
R_obs, _, metadata_obs = stp.io.read_timeseries(input_files_verif, importer,
                                                **ds.importer_kwargs)
R_obs = R_obs[1:,:,:]
metadata_obs["timestamps"] = metadata_obs["timestamps"][1:]

## if necessary, convert to rain rates [mm/h]
R_obs, metadata_obs = converter(R_obs, metadata_obs)

## threshold the data
R_obs[R_obs
github pySTEPS / pysteps / examples / run_ensemble_nowcast.py View on Github external
seed                = 42                # for reproducibility

# Read-in the data
print('Read the data...')
startdate  = datetime.datetime.strptime(startdate_str, "%Y%m%d%H%M")

## import data specifications
ds = stp.rcparams.data_sources[data_source]

## find radar field filenames
input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
                                  ds.fn_ext, ds.timestep, n_prvs_times, 0)

## read radar field files
importer = stp.io.get_method(ds.importer, "importer")
R, _, metadata = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
Rmask = np.isnan(R)

# Prepare input files
print("Prepare the data...")

## if requested, make sure we work with a square domain
reshaper = stp.utils.get_method(adjust_domain)
R, metadata = reshaper(R, metadata, method="pad")

## if necessary, convert to rain rates [mm/h]
converter = stp.utils.get_method("mm/h")
R, metadata = converter(R, metadata)

## threshold the data
R[R
github pySTEPS / pysteps / examples / ensemble_verification.py View on Github external
print("--- Start of the run : %s ---" % (datetime.datetime.now()))
            
            ## time
            t0 = time.time()
        
            # Read inputs
            print("Read the data...")
            
            ## find radar field filenames
            input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
                                              ds.fn_ext, ds.timestep, p["n_prvs_times"])
            
    
            ## read radar field files
            importer    = stp.io.get_method(ds.importer, type="importer")
            R, _, metadata = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
            metadata0 = metadata.copy()
            metadata0["shape"] = R.shape[1:]
            
            # Prepare input files
            print("Prepare the data...")
            
            ## if requested, make sure we work with a square domain
            reshaper = stp.utils.get_method(p["adjust_domain"])
            R, metadata = reshaper(R, metadata)
    
            ## if necessary, convert to rain rates [mm/h]    
            converter = stp.utils.get_method("mm/h")
            R, metadata = converter(R, metadata)
            
            ## threshold the data
            R[R < p["r_threshold"]] = 0.0
github pySTEPS / pysteps / examples / noise_generators.py View on Github external
seed                = 42        # for reproducibility

# Read-in the data
print('Read the data...')
startdate  = datetime.datetime.strptime(startdate_str, "%Y%m%d%H%M")

## import data specifications
ds = stp.rcparams.data_sources[data_source]

## find radar field filenames
input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern, 
                                  ds.fn_ext, ds.timestep, n_prvs_times, 0)

## read radar field files
importer = stp.io.get_method(ds.importer, type="importer")
R, _, metadata = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
Rmask = np.isnan(R)

# Prepare input files
print("Prepare the data...")

## if necessary, convert to rain rates [mm/h]    
converter = stp.utils.get_method("mm/h")
R, metadata = converter(R, metadata)

## threshold the data
R[R
github pySTEPS / pysteps / examples / plot_ensemble_verification.py View on Github external
root_path = rcparams.data_sources[data_source]["root_path"]
path_fmt = rcparams.data_sources[data_source]["path_fmt"]
fn_pattern = rcparams.data_sources[data_source]["fn_pattern"]
fn_ext = rcparams.data_sources[data_source]["fn_ext"]
importer_name = rcparams.data_sources[data_source]["importer"]
importer_kwargs = rcparams.data_sources[data_source]["importer_kwargs"]
timestep = rcparams.data_sources[data_source]["timestep"]

# Find the radar files in the archive
fns = io.find_by_date(
    date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=2
)

# Read the data from the archive
importer = io.get_method(importer_name, "importer")
R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs)

# Convert to rain rate
R, metadata = conversion.to_rainrate(R, metadata)

# Upscale data to 2 km to limit memory usage
R, metadata = dimension.aggregate_fields_space(R, metadata, 2000)

# Plot the rainfall field
plot_precip_field(R[-1, :, :], geodata=metadata)

# Log-transform the data to unit of dBR, set the threshold to 0.1 mm/h,
# set the fill value to -15 dBR
R, metadata = transformation.dB_transform(R, metadata, threshold=0.1, zerovalue=-15.0)

# Set missing values with the fill value
R[~np.isfinite(R)] = -15.0