Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
rocs[lt, thr] = stp.verification.probscores.ROC_curve_init(thr)
# Loop the forecasts
startdate = datetime.datetime.strptime(p["data"][0], "%Y%m%d%H%M")
enddate = datetime.datetime.strptime(p["data"][1], "%Y%m%d%H%M")
countnwc = 0
while startdate + datetime.timedelta(minutes = p["n_lead_times"]*ds.timestep) <= enddate:
countnwc+=1
print("Verifying the nowcast (%02d) ..." % countnwc)
# Read observations
## find radar field filenames
input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
ds.fn_ext, ds.timestep, 0, p["n_lead_times"])
## read radar field files
importer = stp.io.get_method(ds.importer, type="importer")
R_obs, _, metadata_obs = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
R_obs = R_obs[1:,:,:]
metadata_obs["timestamps"] = metadata_obs["timestamps"][1:]
## if necessary, convert to rain rates [mm/h]
converter = stp.utils.get_method("mm/h")
R_obs, metadata_obs = converter(R_obs, metadata_obs)
## threshold the data
R_obs[R_obs < p["r_threshold"]] = 0.0
metadata_obs["threshold"] = p["r_threshold"]
mask_method = "incremental" # sprog, obs or incremental
conditional = False
unit = "mm/h" # mm/h or dBZ
transformation = "dB" # None or dB
adjust_domain = None # None or square
seed = 42 # for reproducibility
# Read-in the data
print('Read the data...')
startdate = datetime.datetime.strptime(startdate_str, "%Y%m%d%H%M")
## import data specifications
ds = stp.rcparams.data_sources[data_source]
## find radar field filenames
input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
ds.fn_ext, ds.timestep, n_prvs_times, 0)
## read radar field files
importer = stp.io.get_method(ds.importer, "importer")
R, _, metadata = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
Rmask = np.isnan(R)
# Prepare input files
print("Prepare the data...")
## if requested, make sure we work with a square domain
reshaper = stp.utils.get_method(adjust_domain)
R, metadata = reshaper(R, metadata, method="pad")
## if necessary, convert to rain rates [mm/h]
converter = stp.utils.get_method("mm/h")
date = datetime.strptime("201701311200", "%Y%m%d%H%M")
data_source = "mch"
# Load data source config
root_path = rcparams.data_sources[data_source]["root_path"]
path_fmt = rcparams.data_sources[data_source]["path_fmt"]
fn_pattern = rcparams.data_sources[data_source]["fn_pattern"]
fn_ext = rcparams.data_sources[data_source]["fn_ext"]
importer_name = rcparams.data_sources[data_source]["importer"]
importer_kwargs = rcparams.data_sources[data_source]["importer_kwargs"]
timestep = rcparams.data_sources[data_source]["timestep"]
# Find the radar files in the archive
fns = io.find_by_date(
date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=2
)
# Read the data from the archive
importer = io.get_method(importer_name, "importer")
R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs)
# Convert to rain rate
R, metadata = conversion.to_rainrate(R, metadata)
# Upscale data to 2 km to limit memory usage
R, metadata = dimension.aggregate_fields_space(R, metadata, 2000)
# Plot the rainfall field
plot_precip_field(R[-1, :, :], geodata=metadata)
# transformed into units of dBR.
date = datetime.strptime("201607112100", "%Y%m%d%H%M")
data_source = "mch"
# Load data source config
root_path = rcparams.data_sources[data_source]["root_path"]
path_fmt = rcparams.data_sources[data_source]["path_fmt"]
fn_pattern = rcparams.data_sources[data_source]["fn_pattern"]
fn_ext = rcparams.data_sources[data_source]["fn_ext"]
importer_name = rcparams.data_sources[data_source]["importer"]
importer_kwargs = rcparams.data_sources[data_source]["importer_kwargs"]
timestep = rcparams.data_sources[data_source]["timestep"]
# Find the radar files in the archive
fns = io.find_by_date(
date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=2
)
# Read the data from the archive
importer = io.get_method(importer_name, "importer")
R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs)
# Convert to rain rate
R, metadata = conversion.to_rainrate(R, metadata)
# Upscale data to 2 km to limit memory usage
R, metadata = dimension.aggregate_fields_space(R, metadata, 2000)
# Plot the rainfall field
plot_precip_field(R[-1, :, :], geodata=metadata)
## plot the nowcast..
R[Rmask] = np.nan # reapply radar mask
stp.plt.animate(R, nloops=2, timestamps=metadata["timestamps"],
R_fct=R_fct, timestep_min=ds.timestep,
UV=UV,
motion_plot=stp.rcparams.plot.motion_plot,
geodata=metadata,
colorscale=stp.rcparams.plot.colorscale,
plotanimation=True, savefig=False,
path_outputs=stp.rcparams.outputs.path_outputs)
# Forecast verification
print("Forecast verification...")
## find the verifying observations
input_files_verif = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
ds.fn_ext, ds.timestep, 0, n_lead_times)
## read observations
R_obs, _, metadata_obs = stp.io.read_timeseries(input_files_verif, importer,
**ds.importer_kwargs)
R_obs = R_obs[1:,:,:]
metadata_obs["timestamps"] = metadata_obs["timestamps"][1:]
## if necessary, convert to rain rates [mm/h]
R_obs, metadata_obs = converter(R_obs, metadata_obs)
## threshold the data
R_obs[R_obs
print("*******************")
print("* %s *****" % startdate.strftime("%Y%m%d%H%M"))
print("* Parameter set : *")
pprint.pprint(p)
print("*******************")
print("--- Start of the run : %s ---" % (datetime.datetime.now()))
## time
t0 = time.time()
# Read inputs
print("Read the data...")
## find radar field filenames
input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
ds.fn_ext, ds.timestep, p["n_prvs_times"])
## read radar field files
importer = stp.io.get_method(ds.importer, type="importer")
R, _, metadata = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
metadata0 = metadata.copy()
metadata0["shape"] = R.shape[1:]
# Prepare input files
print("Prepare the data...")
## if requested, make sure we work with a square domain
reshaper = stp.utils.get_method(p["adjust_domain"])
R, metadata = reshaper(R, metadata)
noise_method = "nonparametric" # parametric, nonparametric, ssft
num_realizations = 7
unit = "mm/h" # mm/h or dBZ
transformation = "dB" # None or dB
adjust_domain = None # None or "square"
seed = 42 # for reproducibility
# Read-in the data
print('Read the data...')
startdate = datetime.datetime.strptime(startdate_str, "%Y%m%d%H%M")
## import data specifications
ds = stp.rcparams.data_sources[data_source]
## find radar field filenames
input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
ds.fn_ext, ds.timestep, n_prvs_times, 0)
## read radar field files
importer = stp.io.get_method(ds.importer, type="importer")
R, _, metadata = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
Rmask = np.isnan(R)
# Prepare input files
print("Prepare the data...")
## if necessary, convert to rain rates [mm/h]
converter = stp.utils.get_method("mm/h")
R, metadata = converter(R, metadata)
## threshold the data
R[R
transformation = "dB" # None or dB
r_threshold = 0.1 # rain/no-rain threshold [mm/h]
## verification parameters
skill_score = "CSI"
v_threshold = 1 # [mm/h]
# Read-in the data
print('Read the data...')
startdate = datetime.datetime.strptime(startdate_str, "%Y%m%d%H%M")
## import data specifications
ds = stp.rcparams.data_sources[data_source]
## find radar field filenames
input_files = stp.io.find_by_date(startdate, ds.root_path, ds.path_fmt, ds.fn_pattern,
ds.fn_ext, ds.timestep, n_prvs_times, 0)
## read radar field files
importer = stp.io.get_method(ds.importer, "importer")
R, _, metadata = stp.io.read_timeseries(input_files, importer, **ds.importer_kwargs)
Rmask = np.isnan(R)
print("The data array has size [nleadtimes,nrows,ncols] =", R.shape)
# Prepare input files
print("Prepare the data...")
## if necessary, convert to rain rates [mm/h]
converter = stp.utils.get_method("mm/h")
R, metadata = converter(R, metadata)
## threshold the data