How to use the pydash.is_list function in pydash

To help you get started, we’ve selected a few pydash examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github kengz / SLM-Lab / test / lib / test_util.py View on Github external
def test_cast_list(test_list, test_str):
    assert ps.is_list(test_list)
    assert ps.is_list(util.cast_list(test_list))

    assert not ps.is_list(test_str)
    assert ps.is_list(util.cast_list(test_str))
github kengz / SLM-Lab / test / lib / test_util.py View on Github external
def test_cast_list(test_list, test_str):
    assert ps.is_list(test_list)
    assert ps.is_list(util.cast_list(test_list))

    assert not ps.is_list(test_str)
    assert ps.is_list(util.cast_list(test_str))
github kengz / SLM-Lab / test / spec / test_dist_spec.py View on Github external
def run_trial_test_dist(spec_file, spec_name=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = spec_util.override_test_spec(spec)
    info_space = InfoSpace()
    info_space.tick('trial')
    spec['meta']['distributed'] = True
    spec['meta']['max_session'] = 2

    trial = Trial(spec, info_space)
    # manually run the logic to obtain global nets for testing to ensure global net gets updated
    global_nets = trial.init_global_nets()
    # only test first network
    if ps.is_list(global_nets):  # multiagent only test first
        net = list(global_nets[0].values())[0]
    else:
        net = list(global_nets.values())[0]
    session_datas = trial.parallelize_sessions(global_nets)
    trial.session_data_dict = {data.index[0]: data for data in session_datas}
    trial_data = analysis.analyze_trial(trial)
    trial.close()
    assert isinstance(trial_data, pd.DataFrame)
github kengz / SLM-Lab / slm_lab / agent / algorithm / policy_util.py View on Github external
def guard_multi_pdparams(pdparams, body):
    '''Guard pdparams for multi action'''
    action_dim = body.action_dim
    is_multi_action = ps.is_iterable(action_dim)
    if is_multi_action:
        assert ps.is_list(pdparams)
        pdparams = [t.clone() for t in pdparams]  # clone for grad safety
        assert len(pdparams) == len(action_dim), pdparams
        # transpose into (batch_size, [action_dims])
        pdparams = [list(torch.split(t, action_dim, dim=0)) for t in torch.cat(pdparams, dim=1)]
    return pdparams
github ConvLab / ConvLab / convlab / agent / net / recurrent.py View on Github external
fc_dims = [self.in_dim] + self.fc_hid_layers
            self.fc_model = net_util.build_fc_model(fc_dims, self.hid_layers_activation)
            self.rnn_input_dim = fc_dims[-1]

        # RNN model
        self.rnn_model = getattr(nn, net_util.get_nn_name(self.cell_type))(
            input_size=self.rnn_input_dim,
            hidden_size=self.rnn_hidden_size,
            num_layers=self.rnn_num_layers,
            batch_first=True, bidirectional=self.bidirectional)

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model([self.rnn_hidden_size, self.out_dim], self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim, self.out_layer_activation):
                tail = net_util.build_fc_model([self.rnn_hidden_size, out_d], out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
github kengz / SLM-Lab / slm_lab / agent / net / mlp.py View on Github external
def build_model_tails(self, out_dim, out_layer_activation):
        '''Build each model_tail. These are stored as Sequential models in model_tails'''
        if not ps.is_list(out_layer_activation):
            out_layer_activation = [out_layer_activation] * len(out_dim)
        model_tails = nn.ModuleList()
        if ps.is_empty(self.tail_hid_layers):
            for out_d, out_activ in zip(out_dim, out_layer_activation):
                tail = net_util.build_fc_model([self.body_hid_layers[-1], out_d], out_activ)
                model_tails.append(tail)
        else:
            assert len(self.tail_hid_layers) == len(out_dim), 'Hydra tail hid_params inconsistent with number out dims'
            for out_d, out_activ, hid_layers in zip(out_dim, out_layer_activation, self.tail_hid_layers):
                dims = hid_layers
                model_tail = net_util.build_fc_model(dims, self.hid_layers_activation)
                tail_out = net_util.build_fc_model([dims[-1], out_d], out_activ)
                model_tail.add_module(str(len(model_tail)), tail_out)
                model_tails.append(model_tail)
        return model_tails
github kengz / SLM-Lab / slm_lab / agent / net / conv.py View on Github external
def build_conv_layers(self, conv_hid_layers):
        '''
        Builds all of the convolutional layers in the network and store in a Sequential model
        '''
        conv_layers = []
        in_d = self.in_dim[0]  # input channel
        for i, hid_layer in enumerate(conv_hid_layers):
            hid_layer = [tuple(e) if ps.is_list(e) else e for e in hid_layer]  # guard list-to-tuple
            # hid_layer = out_d, kernel, stride, padding, dilation
            conv_layers.append(nn.Conv2d(in_d, *hid_layer))
            if self.hid_layers_activation is not None:
                conv_layers.append(net_util.get_activation_fn(self.hid_layers_activation))
            # Don't include batch norm in the first layer
            if self.batch_norm and i != 0:
                conv_layers.append(nn.BatchNorm2d(hid_layer[0]))
            in_d = hid_layer[0]  # update to out_d
        conv_model = nn.Sequential(*conv_layers)
        return conv_model
github kengz / SLM-Lab / slm_lab / agent / net / net_util.py View on Github external
def get_out_dim(body, add_critic=False):
    '''Construct the NetClass out_dim for a body according to is_discrete, action_type, and whether to add a critic unit'''
    policy_out_dim = get_policy_out_dim(body)
    if add_critic:
        if ps.is_list(policy_out_dim):
            out_dim = policy_out_dim + [1]
        else:
            out_dim = [policy_out_dim, 1]
    else:
        out_dim = policy_out_dim
    return out_dim
github dgilland / pydash / src / pydash / objects.py View on Github external
"""
    if not callable(updater):
        updater = pyd.constant(updater)

    if customizer is not None and not callable(customizer):
        call_customizer = partial(callit, clone, customizer, argcount=1)
    elif customizer:
        call_customizer = partial(callit, customizer,
                                  argcount=getargcount(customizer, maxargs=3))
    else:
        call_customizer = None

    default_type = dict if isinstance(obj, dict) else list
    tokens = to_path_tokens(path)

    if not pyd.is_list(tokens):  # pragma: no cover
        tokens = [tokens]

    last_key = pyd.last(tokens)

    if isinstance(last_key, PathToken):
        last_key = last_key.key

    target = obj

    for idx, token in enumerate(pyd.initial(tokens)):
        if isinstance(token, PathToken):
            key = token.key
            default_factory = pyd.get(tokens,
                                      [idx + 1, 'default_factory'],
                                      default=default_type)
        else:
github ConvLab / ConvLab / convlab / agent / net / mlp.py View on Github external
def build_model_tails(self, out_dim, out_layer_activation):
        '''Build each model_tail. These are stored as Sequential models in model_tails'''
        if not ps.is_list(out_layer_activation):
            out_layer_activation = [out_layer_activation] * len(out_dim)
        model_tails = nn.ModuleList()
        if ps.is_empty(self.tail_hid_layers):
            for out_d, out_activ in zip(out_dim, out_layer_activation):
                tail = net_util.build_fc_model([self.body_hid_layers[-1], out_d], out_activ)
                model_tails.append(tail)
        else:
            assert len(self.tail_hid_layers) == len(out_dim), 'Hydra tail hid_params inconsistent with number out dims'
            for out_d, out_activ, hid_layers in zip(out_dim, out_layer_activation, self.tail_hid_layers):
                dims = hid_layers
                model_tail = net_util.build_fc_model(dims, self.hid_layers_activation)
                tail_out = net_util.build_fc_model([dims[-1], out_d], out_activ)
                model_tail.add_module(str(len(model_tail)), tail_out)
                model_tails.append(model_tail)
        return model_tails

pydash

The kitchen sink of Python utility libraries for doing "stuff" in a functional way. Based on the Lo-Dash Javascript library.

MIT
Latest version published 2 months ago

Package Health Score

90 / 100
Full package analysis

Similar packages