How to use the pydash.is_integer function in pydash

To help you get started, we’ve selected a few pydash examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github dgilland / pydash / tests / test_predicates.py View on Github external
def test_is_integer(case, expected):
    assert _.is_integer(case) == expected
github ConvLab / ConvLab / convlab / agent / net / recurrent.py View on Github external
if ps.is_empty(self.fc_hid_layers):
            self.rnn_input_dim = self.in_dim
        else:
            fc_dims = [self.in_dim] + self.fc_hid_layers
            self.fc_model = net_util.build_fc_model(fc_dims, self.hid_layers_activation)
            self.rnn_input_dim = fc_dims[-1]

        # RNN model
        self.rnn_model = getattr(nn, net_util.get_nn_name(self.cell_type))(
            input_size=self.rnn_input_dim,
            hidden_size=self.rnn_hidden_size,
            num_layers=self.rnn_num_layers,
            batch_first=True, bidirectional=self.bidirectional)

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model([self.rnn_hidden_size, self.out_dim], self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim, self.out_layer_activation):
                tail = net_util.build_fc_model([self.rnn_hidden_size, out_d], out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
github ConvLab / ConvLab / convlab / agent / net / net_util.py View on Github external
def get_policy_out_dim(body):
    '''Helper method to construct the policy network out_dim for a body according to is_discrete, action_type'''
    action_dim = body.action_dim
    if body.is_discrete:
        if body.action_type == 'multi_discrete':
            assert ps.is_list(action_dim), action_dim
            policy_out_dim = action_dim
        else:
            assert ps.is_integer(action_dim), action_dim
            policy_out_dim = action_dim
    else:
        assert ps.is_integer(action_dim), action_dim
        if action_dim == 1:  # single action, use [loc, scale]
            policy_out_dim = 2
        else:  # multi-action, use [locs], [scales]
            policy_out_dim = [action_dim, action_dim]
    return policy_out_dim
github ConvLab / ConvLab / convlab / agent / net / conv.py View on Github external
])

        # conv body
        self.conv_model = self.build_conv_layers(self.conv_hid_layers)
        self.conv_out_dim = self.get_conv_output_size()

        # fc body
        if ps.is_empty(self.fc_hid_layers):
            tail_in_dim = self.conv_out_dim
        else:
            # fc body from flattened conv
            self.fc_model = net_util.build_fc_model([self.conv_out_dim] + self.fc_hid_layers, self.hid_layers_activation)
            tail_in_dim = self.fc_hid_layers[-1]

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model([tail_in_dim, self.out_dim], self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim, self.out_layer_activation):
                tail = net_util.build_fc_model([tail_in_dim, out_d], out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
github kengz / SLM-Lab / slm_lab / agent / net / conv.py View on Github external
])

        # conv body
        self.conv_model = self.build_conv_layers(self.conv_hid_layers)
        self.conv_out_dim = self.get_conv_output_size()

        # fc body
        if ps.is_empty(self.fc_hid_layers):
            tail_in_dim = self.conv_out_dim
        else:
            # fc body from flattened conv
            self.fc_model = net_util.build_fc_model([self.conv_out_dim] + self.fc_hid_layers, self.hid_layers_activation)
            tail_in_dim = self.fc_hid_layers[-1]

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model([tail_in_dim, self.out_dim], self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim, self.out_layer_activation):
                tail = net_util.build_fc_model([tail_in_dim, out_d], out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
github kengz / SLM-Lab / slm_lab / agent / net / net_util.py View on Github external
def get_policy_out_dim(body):
    '''Helper method to construct the policy network out_dim for a body according to is_discrete, action_type'''
    action_dim = body.action_dim
    if body.is_discrete:
        if body.action_type == 'multi_discrete':
            assert ps.is_list(action_dim), action_dim
            policy_out_dim = action_dim
        else:
            assert ps.is_integer(action_dim), action_dim
            policy_out_dim = action_dim
    else:
        assert ps.is_integer(action_dim), action_dim
        if action_dim == 1:  # single action, use [loc, scale]
            policy_out_dim = 2
        else:  # multi-action, use [locs], [scales]
            policy_out_dim = [action_dim, action_dim]
    return policy_out_dim
github ConvLab / ConvLab / convlab / agent / net / mlp.py View on Github external
'init_fn',
            'clip_grad_val',
            'loss_spec',
            'optim_spec',
            'lr_scheduler_spec',
            'update_type',
            'update_frequency',
            'polyak_coef',
            'gpu',
        ])

        dims = [self.in_dim] + self.hid_layers
        self.model = net_util.build_fc_model(dims, self.hid_layers_activation)
        # add last layer with no activation
        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = net_util.build_fc_model([dims[-1], self.out_dim], self.out_layer_activation)
        else:
            if not ps.is_list(self.out_layer_activation):
                self.out_layer_activation = [self.out_layer_activation] * len(out_dim)
            assert len(self.out_layer_activation) == len(self.out_dim)
            tails = []
            for out_d, out_activ in zip(self.out_dim, self.out_layer_activation):
                tail = net_util.build_fc_model([dims[-1], out_d], out_activ)
                tails.append(tail)
            self.model_tails = nn.ModuleList(tails)

        net_util.init_layers(self, self.init_fn)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.to(self.device)
        self.train()
github kengz / SLM-Lab / slm_lab / agent / net / conv.py View on Github external
])

        # conv layer
        self.conv_model = self.build_conv_layers(self.conv_hid_layers)
        self.conv_out_dim = self.get_conv_output_size()

        # fc layer
        if not ps.is_empty(self.fc_hid_layers):
            # fc layer from flattened conv
            self.fc_model = self.build_fc_layers(self.fc_hid_layers)
            tail_in_dim = self.fc_hid_layers[-1]
        else:
            tail_in_dim = self.conv_out_dim

        # tails. avoid list for single-tail for compute speed
        if ps.is_integer(self.out_dim):
            self.model_tail = nn.Linear(tail_in_dim, self.out_dim)
        else:
            self.model_tails = nn.ModuleList([nn.Linear(tail_in_dim, out_d) for out_d in self.out_dim])

        net_util.init_layers(self, self.init_fn)
        for module in self.modules():
            module.to(self.device)
        self.loss_fn = net_util.get_loss_fn(self, self.loss_spec)
        self.optim = net_util.get_optim(self, self.optim_spec)
        self.lr_scheduler = net_util.get_lr_scheduler(self, self.lr_scheduler_spec)

pydash

The kitchen sink of Python utility libraries for doing "stuff" in a functional way. Based on the Lo-Dash Javascript library.

MIT
Latest version published 17 days ago

Package Health Score

90 / 100
Full package analysis

Similar packages