Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
#device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug)
# Apply mask (for vis images, mask_color=white)
device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(img,'circle', device, None, 'default', args.debug,True, 0,0,-200,-200)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,norm_slice= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,'all','rgb','v','img',300,args.outdir+'/'+filename)
# Output shape and color data
pcv.print_results(args.image, shape_header, shape_data)
pcv.print_results(args.image, color_header, color_data)
nir2 = cv2.imread(nir_img, -1)
# Flip mask
device, f_mask = pcv.flip(mask, "vertical", device, debug)
# Reize mask
device, nmask = pcv.resize(f_mask, 0.1154905775, 0.1154905775, device, debug)
# position, and crop mask
device, newmask = pcv.crop_position_mask(nir, nmask, device, 30, 4, "top", "right", debug)
# Identify objects
device, nir_objects, nir_hierarchy = pcv.find_objects(nir, newmask, device, debug)
# Object combine kept objects
device, nir_combined, nir_combinedmask = pcv.object_composition(nir, nir_objects, nir_hierarchy, device, debug)
####################################### Analysis #############################################
device, nhist_header, nhist_data, nir_imgs = pcv.analyze_NIR_intensity(nir2, filename1, nir_combinedmask, 256,
device, False, debug)
device, nshape_header, nshape_data, nir_shape = pcv.analyze_object(nir2, filename1, nir_combined, nir_combinedmask,
device, debug)
# Add data to traits table
vis_traits = {}
nir_traits = {}
for i in range(1, len(shape_header)):
vis_traits[shape_header[i]] = shape_data[i]
for i in range(1, len(boundary_header)):
vis_traits[boundary_header[i]] = boundary_data[i]
for i in range(2, len(color_header)):
vis_traits[color_header[i]] = serialize_color_data(color_data[i])
# Threshold the green-magenta and blue images
device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug)
device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug)
device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 500, 0,-600,-885)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 845, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
#device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug)
# Apply mask (for vis images, mask_color=white)
device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(img,'rectangle', device, None, 'default', args.debug,True, 600,450,-600,-350)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,None,'v','img',300,args.outdir+'/'+filename)
# Output shape and color data
pcv.print_results(args.image, shape_header, shape_data)
pcv.print_results(args.image, color_header, color_data)
# Threshold the green-magenta and blue images
device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug)
device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug)
device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 525, 0,-490,-150)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 295, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
#device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug)
# Apply mask (for vis images, mask_color=white)
device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(img,'circle', device, None, 'default', args.debug,True, 0,0,-200,-200)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
# Output shape and color data
result=open(args.result,"a")
# Threshold the green-magenta and blue images
device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug)
device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug)
device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 525, 0,-490,-150)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 295, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
# Threshold the green-magenta and blue images
device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug)
device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug)
device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 525, 0,-490,-150)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 325, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
device, soil_cnt = pcv.median_blur(soil_fill, 5, device, args.debug)
# Apply mask (for vis images, mask_color=white)
device, masked2 = pcv.apply_mask(soil_masked, soil_cnt, 'white', device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, soil_cnt, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(img,'circle', device, None, 'default', args.debug,True, 0,50,-1100,-1100)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,norm_slice= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,'all','rgb','v','img',300,args.outdir+'/'+filename)
# Output shape and color data
pcv.print_results(args.image, shape_header, shape_data)
pcv.print_results(args.image, color_header, color_data)
# Threshold the green-magenta and blue images
device, masked2a_thresh = pcv.binary_threshold(masked2_a, 127, 255, 'dark', device, args.debug)
device, masked2b_thresh = pcv.binary_threshold(masked2_b, 128, 255, 'light', device, args.debug)
device, ab_fill = pcv.logical_or(masked2a_thresh, masked2b_thresh, device, args.debug)
# Identify objects
device, id_objects,obj_hierarchy = pcv.find_objects(masked2, ab_fill, device, args.debug)
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,True, 550, 0,-600,-925)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 900, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)