Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############### Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 900, device,args.debug,args.outdir+'/'+filename)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,None,'v','img',300,args.outdir+'/'+filename)
# Output shape and color data
pcv.print_results(args.image, shape_header, shape_data)
pcv.print_results(args.image, color_header, color_data)
pcv.print_results(args.image, boundary_header, boundary_data)
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
# Output shape and color data
result=open(args.result,"a")
result.write('\t'.join(map(str,shape_header)))
result.write("\n")
result.write('\t'.join(map(str,shape_data)))
result.write("\n")
for row in shape_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
result.write('\t'.join(map(str,color_header)))
result.write("\n")
result.write('\t'.join(map(str,color_data)))
result.write("\n")
for row in color_img:
# Define ROI
device, roi1, roi_hierarchy= pcv.define_roi(img,'circle', device, None, 'default', args.debug,True, 0,0,-50,-50)
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,'all','v','img',300,args.outdir+'/'+filename)
# Output shape and color data
pcv.print_results(args.image, shape_header, shape_data)
pcv.print_results(args.image, color_header, color_data)
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 325, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
# Output shape and color data
result=open(args.result,"a")
result.write('\t'.join(map(str,shape_header)))
result.write("\n")
result.write('\t'.join(map(str,shape_data)))
result.write("\n")
for row in shape_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
result.write('\t'.join(map(str,color_header)))
result.write("\n")
result.write('\t'.join(map(str,color_data)))
result.write("\n")
result.write('\t'.join(map(str,boundary_header)))
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
# Output shape and color data
result=open(args.result,"a")
result.write('\t'.join(map(str,shape_header)))
result.write("\n")
result.write('\t'.join(map(str,shape_data)))
result.write("\n")
for row in shape_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
result.write('\t'.join(map(str,color_header)))
result.write("\n")
result.write('\t'.join(map(str,color_data)))
result.write("\n")
for row in color_img:
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 935, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
# Output shape and color data
result=open(args.result,"a")
result.write('\t'.join(map(str,shape_header)))
result.write("\n")
result.write('\t'.join(map(str,shape_data)))
result.write("\n")
result.write('\t'.join(map(str,shape_img)))
result.write("\n")
result.write('\t'.join(map(str,color_header)))
result.write("\n")
result.write('\t'.join(map(str,color_data)))
result.write("\n")
result.write('\t'.join(map(str,boundary_header)))
result.write("\n")
debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, debug)
############## VIS Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header, shape_data, shape_img = pcv.analyze_object(img, vis_img, obj, mask, device, debug)
# Shape properties relative to user boundary line (optional)
device, boundary_header, boundary_data, boundary_img1 = pcv.analyze_bound(img, vis_img, obj, mask, 384, device,
debug)
# Determine color properties: Histograms, Color Slices and
# Pseudocolored Images, output color analyzed images (optional)
device, color_header, color_data, color_img = pcv.analyze_color(img, vis_img, mask, 256, device, debug,
None, 'v', 'img', 300)
# Output shape and color data
print('\t'.join(map(str, shape_header)) + '\n')
print('\t'.join(map(str, shape_data)) + '\n')
for row in shape_img:
print('\t'.join(map(str, row)) + '\n')
print('\t'.join(map(str, color_header)) + '\n')
print('\t'.join(map(str, color_data)) + '\n')
print('\t'.join(map(str, boundary_header)) + '\n')
print('\t'.join(map(str, boundary_data)) + '\n')
print('\t'.join(map(str, boundary_img1)) + '\n')
for row in color_img:
print('\t'.join(map(str, row)) + '\n')
############################# Use VIS image mask for NIR image#########################
# Decide which objects to keep
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############### Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 885, device,args.debug,args.outdir+'/'+filename)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, kept_mask, 256, device, args.debug,None,'v','img',300,args.outdir+'/'+filename)
# Output shape and color data
pcv.print_results(args.image, shape_header, shape_data)
pcv.print_results(args.image, color_header, color_data)
pcv.print_results(args.image, boundary_header, boundary_data)
device,roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img,'partial',roi1,roi_hierarchy,id_objects,obj_hierarchy,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects, hierarchy3, device, args.debug)
############## VIS Analysis ################
outfile=False
if args.writeimg==True:
outfile=args.outdir+"/"+filename
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,outfile)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,color_img= pcv.analyze_color(img, args.image, mask, 256, device, args.debug,None,'v','img',300,outfile)
# Output shape and color data
result=open(args.result,"a")
result.write('\t'.join(map(str,shape_header)))
result.write("\n")
result.write('\t'.join(map(str,shape_data)))
result.write("\n")
for row in shape_img:
result.write('\t'.join(map(str,row)))
result.write("\n")
result.write('\t'.join(map(str,color_header)))
result.write("\n")
result.write('\t'.join(map(str,color_data)))
result.write("\n")
for row in color_img:
device, roi4, roi_hierarchy4= pcv.define_roi(masked2,'rectangle', device, None, 'default', args.debug,False, 0, 0,0,0)
device,roi_objects4, hierarchy4, kept_mask4, obj_area = pcv.roi_objects(img,'partial',roi4,roi_hierarchy4,id_objects4,obj_hierarchy4,device, args.debug)
# Object combine kept objects
device, obj, mask = pcv.object_composition(img, roi_objects4, hierarchy4, device, args.debug)
############## Analysis ################
# Find shape properties, output shape image (optional)
device, shape_header,shape_data,shape_img = pcv.analyze_object(img, args.image, obj, mask, device,args.debug,args.outdir+'/'+filename)
# Shape properties relative to user boundary line (optional)
device, boundary_header,boundary_data, boundary_img1= pcv.analyze_bound(img, args.image,obj, mask, 950, device,args.debug,args.outdir+'/'+filename)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
device, color_header,color_data,norm_slice= pcv.analyze_color(img, args.image, kept_mask4, 256, device, args.debug,'all','rgb','v','img',300,args.outdir+'/'+filename)
# Output shape and color data
pcv.print_results(args.image, shape_header, shape_data)
pcv.print_results(args.image, color_header, color_data)
pcv.print_results(args.image, boundary_header, boundary_data)