How to use the patsy.PatsyError function in patsy

To help you get started, we’ve selected a few patsy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pydata / patsy / patsy / test_highlevel.py View on Github external
def raise_patsy_error(x):
        raise PatsyError("WHEEEEEE")
    formula = "raise_patsy_error(X) + Y"
github pydata / patsy / patsy / test_highlevel.py View on Github external
def t_invalid(formula_like, data, depth, exc=PatsyError): # pragma: no cover
    if isinstance(depth, int):
        depth += 1
    fs = [dmatrix, dmatrices]
    if have_pandas:
        fs += [dmatrix_pandas, dmatrices_pandas]
    for f in fs:
        try:
            f(formula_like, data, depth)
        except exc:
            pass
        else:
            raise AssertionError
github pydata / patsy / patsy / desc.py View on Github external
def eval(self, tree, require_evalexpr=True):
        result = None
        assert isinstance(tree, ParseNode)
        key = (tree.type, len(tree.args))
        if key not in self._evaluators:
            raise PatsyError("I don't know how to evaluate this "
                                "'%s' operator" % (tree.type,),
                                tree.token)
        result = self._evaluators[key](self, tree)
        if require_evalexpr and not isinstance(result, IntermediateExpr):
            if isinstance(result, ModelDesc):
                raise PatsyError("~ can only be used once, and "
                                    "only at the top level",
                                    tree)
            else:
                raise PatsyError("custom operator returned an "
                                    "object that I don't know how to "
                                    "handle", tree)
        return result
github pydata / patsy / patsy / highlevel.py View on Github external
def incr_dbuilders(formula_like, data_iter_maker, eval_env=0,
                   NA_action="drop"):
    """Construct two design matrix builders incrementally from a large data
    set.

    :func:`incr_dbuilders` is to :func:`incr_dbuilder` as :func:`dmatrices` is
    to :func:`dmatrix`. See :func:`incr_dbuilder` for details.
    """
    eval_env = EvalEnvironment.capture(eval_env, reference=1)
    design_infos = _try_incr_builders(formula_like, data_iter_maker, eval_env,
                                      NA_action)
    if design_infos is None:
        raise PatsyError("bad formula-like object")
    if len(design_infos[0].column_names) == 0:
        raise PatsyError("model is missing required outcome variables")
    return design_infos
github pydata / patsy / patsy / highlevel.py View on Github external
and isinstance(formula_like[0], DesignInfo)
        and isinstance(formula_like[1], DesignInfo)):
        return formula_like
    if hasattr(formula_like, "__patsy_get_model_desc__"):
        formula_like = formula_like.__patsy_get_model_desc__(eval_env)
        if not isinstance(formula_like, ModelDesc):
            raise PatsyError("bad value from %r.__patsy_get_model_desc__"
                                % (formula_like,))
        # fallthrough
    if not six.PY3 and isinstance(formula_like, unicode):
        # Included for the convenience of people who are using py2 with
        # __future__.unicode_literals.
        try:
            formula_like = formula_like.encode("ascii")
        except UnicodeEncodeError:
            raise PatsyError(
                "On Python 2, formula strings must be either 'str' objects, "
                "or else 'unicode' objects containing only ascii "
                "characters. You passed a unicode string with non-ascii "
                "characters. I'm afraid you'll have to either switch to "
                "ascii-only, or else upgrade to Python 3.")
    if isinstance(formula_like, str):
        formula_like = ModelDesc.from_formula(formula_like)
        # fallthrough
    if isinstance(formula_like, ModelDesc):
        assert isinstance(eval_env, EvalEnvironment)
        return design_matrix_builders([formula_like.lhs_termlist,
                                       formula_like.rhs_termlist],
                                      data_iter_maker,
                                      eval_env,
                                      NA_action)
    else:
github pydata / patsy / patsy / highlevel.py View on Github external
The actual contents of the design matrix is identical in both cases, and
    in both cases a :class:`DesignInfo` object will be available in a
    ``.design_info`` attribute on the return value. However, for
    ``return_type="dataframe"``, any pandas indexes on the input (either in
    `data` or directly passed through `formula_like`) will be preserved, which
    may be useful for e.g. time-series models.

    .. versionadded:: 0.2.0
       The ``NA_action`` argument.
    """
    eval_env = EvalEnvironment.capture(eval_env, reference=1)
    (lhs, rhs) = _do_highlevel_design(formula_like, data, eval_env,
                                      NA_action, return_type)
    if lhs.shape[1] != 0:
        raise PatsyError("encountered outcome variables for a model "
                            "that does not expect them")
    return rhs
github pydata / patsy / patsy / desc.py View on Github external
def _eval_number(evaluator, tree):
    raise PatsyError("numbers besides '0' and '1' are "
                        "only allowed with **", tree)
github pydata / patsy / patsy / design_info.py View on Github external
assert di.terms == [t_x, t_y]
    assert di.column_name_indexes == {"x1": 0, "x2": 1, "x3": 2, "y": 3}
    assert di.term_name_slices == {"x": slice(0, 3), "y": slice(3, 4)}
    assert di.term_slices == {t_x: slice(0, 3), t_y: slice(3, 4)}
    assert di.describe() == "x + y"

    assert di.slice(1) == slice(1, 2)
    assert di.slice("x1") == slice(0, 1)
    assert di.slice("x2") == slice(1, 2)
    assert di.slice("x3") == slice(2, 3)
    assert di.slice("x") == slice(0, 3)
    assert di.slice(t_x) == slice(0, 3)
    assert di.slice("y") == slice(3, 4)
    assert di.slice(t_y) == slice(3, 4)
    assert di.slice(slice(2, 4)) == slice(2, 4)
    assert_raises(PatsyError, di.slice, "asdf")

    # smoke test
    repr(di)

    assert_no_pickling(di)

    # One without term objects
    di = DesignInfo(["a1", "a2", "a3", "b"])
    assert di.column_names == ["a1", "a2", "a3", "b"]
    assert di.term_names == ["a1", "a2", "a3", "b"]
    assert di.terms is None
    assert di.column_name_indexes == {"a1": 0, "a2": 1, "a3": 2, "b": 3}
    assert di.term_name_slices == {"a1": slice(0, 1),
                                   "a2": slice(1, 2),
                                   "a3": slice(2, 3),
                                   "b": slice(3, 4)}
github pydata / patsy / patsy / highlevel.py View on Github external
m = atleast_2d_column_default(m, preserve_pandas=True)
                m = pandas.DataFrame(m)
                m.columns = di.column_names
                m.design_info = di
                return (m, orig_index)
            else:
                return (DesignMatrix(m, di), orig_index)
        rhs, rhs_orig_index = _regularize_matrix(rhs, "x")
        if lhs is None:
            lhs = np.zeros((rhs.shape[0], 0), dtype=float)
        lhs, lhs_orig_index = _regularize_matrix(lhs, "y")

        assert isinstance(getattr(lhs, "design_info", None), DesignInfo)
        assert isinstance(getattr(rhs, "design_info", None), DesignInfo)
        if lhs.shape[0] != rhs.shape[0]:
            raise PatsyError("shape mismatch: outcome matrix has %s rows, "
                                "predictor matrix has %s rows"
                                % (lhs.shape[0], rhs.shape[0]))
        if rhs_orig_index is not None and lhs_orig_index is not None:
            if not rhs_orig_index.equals(lhs_orig_index):
                raise PatsyError("index mismatch: outcome and "
                                    "predictor have incompatible indexes")
        if return_type == "dataframe":
            if rhs_orig_index is not None and lhs_orig_index is None:
                lhs.index = rhs.index
            if rhs_orig_index is None and lhs_orig_index is not None:
                rhs.index = lhs.index
        return (lhs, rhs)