How to use the pathos.pools.ParallelPool function in pathos

To help you get started, we’ve selected a few pathos examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github uqfoundation / pathos / tests / test_map.py View on Github external
def test_pp():
    from pathos.pools import ParallelPool as PPP
    pool = PPP(servers=('localhost:5653','localhost:2414'))
    res = timed_pool(pool, items, delay, verbose)
    assert res == std
github uqfoundation / pathos / tests / test_with.py View on Github external
def test_with_pp():
    from pathos.pools import ParallelPool
    run_with_multipool(ParallelPool)
github uqfoundation / mystic / examples / TEST_ffitPP_b.py View on Github external
def main(servers,ncpus):
    from mystic.solvers import DifferentialEvolutionSolver2
   #from pathos.pools import ProcessPool as Pool
    from pathos.pools import ParallelPool as Pool

    solver = DifferentialEvolutionSolver2(ND, NP)
    solver.SetMapper(Pool().map)
    solver.SetRandomInitialPoints(min = [-100.0]*ND, max = [100.0]*ND)
    solver.SetEvaluationLimits(generations=MAX_GENERATIONS)
    solver.SetGenerationMonitor(VerboseMonitor(30))
    solver.enable_signal_handler()
  
    strategy = Best1Exp
    #strategy = Best1Bin

    solver.SelectServers(servers,ncpus)
    solver.Solve(ChebyshevCost, termination=VTR(0.01), strategy=strategy, \
                 CrossProbability=1.0, ScalingFactor=0.9 , \
                 sigint_callback=plot_solution)

    solution = solver.Solution()

    return solution
github uqfoundation / pathos / examples / pp_map.py View on Github external
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2020 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/pathos/blob/master/LICENSE
"""
example of using the 'raw' distributed parallel mapper

To run: python pp_map.py
"""

from pathos.pools import ParallelPool as Pool
pool = Pool()


if __name__ == '__main__':
    def add(x, y, z):
        """Add three values"""
        return x + y + z

    def busybeaver(x):
        """This can take a while"""
        for num in range(1000000):
            x = x + num
        return x

    # Immediate evaluation example
    import time
    start = time.time()
github uqfoundation / pathos / examples / async_map.py View on Github external
if __name__ == '__main__':
    x = list(range(500))
    delay = 0.01
    maxtries = 200
    f = busy_add
   #f = busy_squared
   #f = squared

   #from pathos.pools import ProcessPool as Pool
   #from pathos.pools import ThreadPool as Pool
    from pathos.pools import ParallelPool as Pool
   #from pathos.helpers import freeze_support, shutdown
   #freeze_support()

    pool = Pool(nodes=4)
    test_ready( pool, f, maxtries, delay )

    # shutdown
    pool.close()
    pool.join()
    pool.clear()
github uqfoundation / mystic / examples4 / PP_surrogate_diam.py View on Github external
random_seed(123)

 #stepmon = VerboseMonitor(100)
  stepmon = Monitor()
  evalmon = Monitor()

  ndim = len(lb) # [(1 + RVend) - RVstart] + 1

  solver = DifferentialEvolutionSolver2(ndim,npop)
  solver.SetRandomInitialPoints(min=lb,max=ub)
  solver.SetStrictRanges(min=lb,max=ub)
  solver.SetEvaluationLimits(maxiter,maxfun)
  solver.SetEvaluationMonitor(evalmon)
  solver.SetGenerationMonitor(stepmon)
  solver.SetMapper(Pool().map)

  tol = convergence_tol
  solver.Solve(cost,termination=CRT(tol,tol),strategy=Best1Exp, \
               CrossProbability=crossover,ScalingFactor=percent_change)

  print("solved: %s" % solver.bestSolution)
  scale = 1.0
  diameter_squared = -solver.bestEnergy / scale  #XXX: scale != 0
  func_evals = solver.evaluations
  return diameter_squared, func_evals
github uqfoundation / mystic / examples / TEST_ffitPP.py View on Github external
def main():
    from mystic.solvers import DifferentialEvolutionSolver2
   #from pathos.pools import ProcessPool as Pool
    from pathos.pools import ParallelPool as Pool

    solver = DifferentialEvolutionSolver2(ND, NP)
    solver.SetMapper(Pool().map)
    solver.SetRandomInitialPoints(min = [-100.0]*ND, max = [100.0]*ND)
    solver.SetEvaluationLimits(generations=MAX_GENERATIONS)
    solver.SetGenerationMonitor(VerboseMonitor(30))
    solver.enable_signal_handler()
  
    strategy = Best1Exp
    #strategy = Best1Bin

    solver.Solve(ChebyshevCost, termination=VTR(0.01), strategy=strategy, \
                 CrossProbability=1.0, ScalingFactor=0.9 , \
                 sigint_callback=plot_solution)

    solution = solver.Solution()

    return solution
github uqfoundation / pathos / examples2 / all_scatter_gather2.py View on Github external
y = MpiPool(nodes).map(sin_diff, x, xp)
        print("Output: %s\n" % np.asarray(y))

    # map sin_diff to the workers, then print to screen
    print("Running multiprocesing on %d processors..." % nodes)
    y = ProcessPool(nodes).map(sin_diff, x, xp)
    print("Output: %s\n" % np.asarray(y))

    # map sin_diff to the workers, then print to screen
    print("Running multiprocesing on %d threads..." % nodes)
    y = ThreadPool(nodes).map(sin_diff, x, xp)
    print("Output: %s\n" % np.asarray(y))

    # map sin_diff to the workers, then print to screen
    print("Running parallelpython on %d cpus..." % nodes)
    y = ParallelPool(nodes).map(sin_diff, x, xp)
    print("Output: %s\n" % np.asarray(y))

    # ensure all pools shutdown
    shutdown()
github uqfoundation / pathos / examples2 / all_scatter_gather.py View on Github external
y = MpiPool(nodes).map(sin2, x)
        print("Output: %s\n" % np.asarray(y))

    # map sin2 to the workers, then print to screen
    print("Running multiprocesing on %d processors..." % nodes)
    y = ProcessPool(nodes).map(sin2, x)
    print("Output: %s\n" % np.asarray(y))

    # map sin2 to the workers, then print to screen
    print("Running multiprocesing on %d threads..." % nodes)
    y = ThreadPool(nodes).map(sin2, x)
    print("Output: %s\n" % np.asarray(y))

    # map sin2 to the workers, then print to screen
    print("Running parallelpython on %d cpus..." % nodes)
    y = ParallelPool(nodes).map(sin2, x)
    print("Output: %s\n" % np.asarray(y))

    # ensure all pools shutdown
    shutdown()