Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_infer_data_type():
assert infer_data_type(categorical) == "categorical"
assert infer_data_type(ordinal) == "ordinal"
assert infer_data_type(continuous) == "continuous"
def test_binomial():
assert infer_data_type(binomial) == "categorical"
assert infer_data_type(binomial_float) == "categorical"
assert infer_data_type(binomial_integer) == "categorical"
def test_infer_data_type():
assert infer_data_type(categorical) == "categorical"
assert infer_data_type(ordinal) == "ordinal"
assert infer_data_type(continuous) == "continuous"
def test_binomial():
assert infer_data_type(binomial) == "categorical"
assert infer_data_type(binomial_float) == "categorical"
assert infer_data_type(binomial_integer) == "categorical"
def test_infer_data_type():
assert infer_data_type(categorical) == "categorical"
assert infer_data_type(ordinal) == "ordinal"
assert infer_data_type(continuous) == "continuous"
def test_unknown_data_type():
with pytest.raises(ValueError):
infer_data_type(unknown_type)
def test_binomial():
assert infer_data_type(binomial) == "categorical"
assert infer_data_type(binomial_float) == "categorical"
assert infer_data_type(binomial_integer) == "categorical"
def compute_edge_colors(self):
"""Compute the edge colors."""
data = [self.graph.edges[n][self.edge_color] for n in self.edges]
data_reduced = sorted(list(set(data)))
dtype = infer_data_type(data)
n_grps = num_discrete_groups(data)
if dtype == "categorical" or dtype == "ordinal":
if n_grps <= 8:
cmap = get_cmap(
cmaps["Accent_{0}".format(n_grps)].mpl_colormap
)
else:
cmap = n_group_colorpallet(n_grps)
elif dtype == "continuous" and not is_data_diverging(data):
cmap = get_cmap(cmaps["weights"])
for d in data:
idx = data_reduced.index(d) / n_grps
self.edge_colors.append(cmap(idx))
# Add colorbar if required.
logging.debug("length of data_reduced: {0}".format(len(data_reduced)))
def compute_node_colors(self):
"""Compute the node colors. Also computes the colorbar."""
data = [self.graph.nodes[n][self.node_color] for n in self.nodes]
if self.group_order == "alphabetically":
data_reduced = sorted(list(set(data)))
elif self.group_order == "default":
data_reduced = list(unique_everseen(data))
dtype = infer_data_type(data)
n_grps = num_discrete_groups(data)
if dtype == "categorical" or dtype == "ordinal":
if n_grps <= 8:
cmap = get_cmap(
cmaps["Accent_{0}".format(n_grps)].mpl_colormap
)
else:
cmap = n_group_colorpallet(n_grps)
elif dtype == "continuous" and not is_data_diverging(data):
cmap = get_cmap(cmaps["continuous"].mpl_colormap)
elif dtype == "continuous" and is_data_diverging(data):
cmap = get_cmap(cmaps["diverging"].mpl_colormap)
for d in data:
idx = data_reduced.index(d) / n_grps