Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Make a CircosPlot, but with the nodes colored by their connected component
# subgraph ID.
ccs = nx.connected_component_subgraphs(G)
for i, g in enumerate(ccs):
for n in g.nodes():
G.node[n]["group"] = i
G.node[n]["connectivity"] = G.degree(n)
m = CircosPlot(
G, node_color="group", node_grouping="group", node_order="connectivity"
)
m.draw()
plt.show()
# Make an ArcPlot.
a = ArcPlot(
G, node_color="group", node_grouping="group", node_order="connectivity"
)
a.draw()
plt.show()
largest_max_clique = set(sorted(nx.find_cliques(G), key=lambda x: len(x))[-1])
# Create a subgraph from the largest_max_clique: G_lmc
G_lmc = G.subgraph(largest_max_clique)
# Go out 1 degree of separation
for node in G_lmc.nodes():
G_lmc.add_nodes_from(G.neighbors(node))
G_lmc.add_edges_from(zip([node]*len(G.neighbors(node)), G.neighbors(node)))
# Record each node's degree centrality score
for n in G_lmc.nodes():
G_lmc.node[n]['degree centrality'] = nx.degree_centrality(G_lmc)[n]
# Create the ArcPlot object: a
a = ArcPlot(G_lmc, node_order='degree centrality')
# Draw the ArcPlot to the screen
a.draw()
plt.show()
#---------=======================================================--------------%
#Recommending co-editors who have yet to edit together
# Import necessary modules
from itertools import combinations
from collections import defaultdict
# Initialize the defaultdict: recommended
recommended = defaultdict(int)
# Iterate over all the nodes in G
for n, d in G.nodes(data=True):
import networkx as nx
from nxviz.plots import ArcPlot
G = nx.Graph()
G.add_node("A", score=1.5)
G.add_node("B", score=0.5)
G.add_node("C", score=1)
G.add_edge("A", "B", weight=8, type="a")
G.add_edge("A", "C", weight=8, type="b")
G.add_edge("B", "C", weight=8, type="a")
c = ArcPlot(G, node_size="score", edge_width="weight", edge_color="type")
c.draw()
plt.show()
"""
Displays a NetworkX barbell graph to screen using a ArcPlot.
"""
from random import choice
import matplotlib.pyplot as plt
import networkx as nx
from nxviz.plots import ArcPlot
G = nx.barbell_graph(m1=10, m2=3)
for n, d in G.nodes(data=True):
G.node[n]["class"] = choice(["one", "two", "three"])
c = ArcPlot(G, node_color="class", node_order="class")
c.draw()
plt.show()
def draw(self):
super(ArcPlot, self).draw()
left_limit = self.node_sizes[0]
right_limit = sum(r for r in self.node_sizes)
xlimits = (-left_limit, right_limit + 1)
self.ax.set_xlim(*xlimits)
self.ax.set_ylim(*xlimits)
"""
Displays a NetworkX octahedral graph to screen using a ArcPlot.
"""
import matplotlib.pyplot as plt
import networkx as nx
from nxviz.plots import ArcPlot
G = nx.octahedral_graph()
c = ArcPlot(G)
c.draw()
plt.show()
"""
Displays a NetworkX lollipop graph to screen using a ArcPlot.
"""
import matplotlib.pyplot as plt
import networkx as nx
import numpy.random as npr
from nxviz.plots import ArcPlot
G = nx.lollipop_graph(m=10, n=4)
for n, d in G.nodes(data=True):
G.node[n]["value"] = npr.normal()
c = ArcPlot(G, node_color="value", node_order="value")
c.draw()
plt.show()
"""
Displays different edge_colors with ArcPlot
"""
import matplotlib.pyplot as plt
import networkx as nx
from nxviz.plots import ArcPlot
G = nx.Graph()
G.add_edge("A", "B", weight=8, type="a")
G.add_edge("A", "C", weight=8, type="b")
G.add_edge("B", "C", weight=8, type="a")
c = ArcPlot(G, edge_width="weight", edge_color="type")
c.draw()
plt.show()
NODES_EBUNCH = [
("A", {"n_visitors": "1"}),
("B", {"n_visitors": "3"}),
("C", {"n_visitors": "4"}),
]
G.add_nodes_from(NODES_EBUNCH)
EDGES_EBUNCH = [("A", "B", 1), ("A", "C", 2), ("B", "C", 25), ("C", "B", 10)]
G.add_weighted_edges_from(EDGES_EBUNCH)
edges = G.edges()
c = ArcPlot(
G,
node_labels=True,
node_size="n_visitors",
node_color="n_visitors",
edge_width="weight",
)
c.draw()
plt.show()
#---------=======================================================--------------%
#ArcPlot
# Import necessary modules
from nxviz.plots import ArcPlot
import matplotlib.pyplot as plt
# Iterate over all the nodes in G, including the metadata
for n, d in G.nodes(data=True):
# Calculate the degree of each node: G.node[n]['degree']
G.node[n]['degree'] = nx.degree(G, n)
# Create the ArcPlot object: a
a = ArcPlot(graph=G, node_order='degree')
# Draw the ArcPlot to the screen
a.draw()
plt.show()
#---------=======================================================--------------%
#CircosPlot
# Import necessary modules
from nxviz import CircosPlot
import matplotlib.pyplot as plt
# Iterate over all the nodes, including the metadata
for n, d in G.nodes(data=True):
# Calculate the degree of each node: G.node[n]['degree']