Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def read_edgelist_label_data(folder, prefix):
graph_path = osp.join(folder, "{}.ungraph".format(prefix))
cmty_path = osp.join(folder, "{}.cmty".format(prefix))
G = nx.read_edgelist(graph_path, nodetype=int, create_using=nx.Graph())
num_node = G.number_of_nodes()
print("edge number: ", num_node)
with open(graph_path) as f:
context = f.readlines()
print("edge number: ", len(context))
edge_index = np.zeros((2, len(context)))
for i, line in enumerate(context):
edge_index[:, i] = list(map(int, line.strip().split("\t")))
edge_index = torch.from_numpy(edge_index).to(torch.int)
with open(cmty_path) as f:
context = f.readlines()
print("class number: ", len(context))
label = np.zeros((num_node, len(context)))
for i, line in enumerate(context):
def main(argv):
#File IO Handling/Reading in Graph
f_edge = open(argv[0], 'rb')
f_comm = open(argv[1])
#with open error checking
#pass in path, check for error cases for G
G = nx.read_edgelist(f_edge,comments='#',nodetype=int,edgetype=int)
f_edge.close()
#Initializing Important Var
num_nodes = len(G)
num_edges = nx.number_of_edges(G)
degree_dict = G.degree(G.nodes_iter())
#better name for d_m
d_m = np.median(list(degree_dict.values()))
#Iterating through community file
for line in f_comm:
comm_line = map(int, line.split())
comm_line.sort()
import sys
import networkx as net
import collections
from compiler.ast import flatten
if len(sys.argv) < 3:
print "Usage: %s [...]" % sys.argv[0]
sys.exit(1)
layers = []
for f in sys.argv[1:]:
G = net.Graph(net.read_edgelist(f, nodetype=int))
layers.append(G)
nodes = flatten([x for j in layers for x in j.nodes()])
#nodes.sort()
nodes = set(nodes)
M = len(layers)
#print nodes
for n in nodes:
deg_alpha_square = 0
deg = 0
col = 0
print n,
for l in layers:
print('Reading {} edgelist'.format(network))
network_edges_dir = './data/{}/{}.txt'.format(network, network)
if network in ['hamster']:
with open(network_edges_dir, 'rb')as edges_f:
network_g = nx.read_edgelist(edges_f, nodetype=int, create_using=nx.Graph(), encoding='latin1',
data=(('weight', float),))
# print('Generating network visualization')
visualization_file_name = './visualizations/{0}-visualization.png'.format(network)
save_visualization(network_g, visualization_file_name, '{} Network'.format(network))
else:
with open(network_edges_dir, 'rb')as edges_f:
network_g = nx.read_edgelist(edges_f, nodetype=int, create_using=nx.DiGraph(), encoding='latin1',
data=(('weight', float),))
print('Num. weakly connected components: ', nx.number_weakly_connected_components(network_g))
# print('Generating network visualization and statistics')
visualization_file_name = './visualizations/{0}-visualization.png'.format(network)
statistics_file_name_pkl = './network-statistics/{0}-statistics.pkl'.format(network)
statistics_file_name_json = './network-statistics/{0}-statistics.json'.format(network)
#save_visualization(network_g, visualization_file_name, '{} Network'.format(network))
save_network_statistics(network_g, statistics_file_name_pkl)
save_network_statistics_json(network_g, statistics_file_name_json)
def main(argv):
with open(argv[0], 'rb') as edgelist_file:
#Creating graph in networkX
graph = nx.read_edgelist(edgelist_file, comments='#', nodetype=int, edgetype=int)
#Collecting statistics on entire graph
num_nodes = len(graph)
num_edges = nx.number_of_edges(graph)
graph_degree = graph.degree(graph.nodes_iter())
median_degree = np.median(list(graph_degree.values()))
#Demo sample metrics collected for visualization
cond_list = []
cut_list = []
flake_list = []
fomd_list = []
tpr_list = []
sep_list = []
num_comm = 0
def loadGraph(gfile):
return nx.read_edgelist(path=gfile, comments='#',
delimiter="\t", nodetype=int)
def read_graph(file, get_connected_graph=True, remove_selfloops=True, get_directed=False):
if args.weighted:
G = nx.read_edgelist(file, nodetype=int, data=(('weight', float),), create_using=nx.DiGraph())
else:
G = nx.read_edgelist(file, nodetype=int, create_using=nx.DiGraph())
for edge in G.edges():
G[edge[0]][edge[1]]['weight'] = 1
print('Graph created!!!')
if remove_selfloops:
# remove the edges with selfloops
for node in G.nodes_with_selfloops():
G.remove_edge(node, node)
if not get_directed:
G = G.to_undirected()
if get_connected_graph and not nx.is_connected(G):
connected_sub_graph = max(nx.connected_component_subgraphs(G), key=len)
print('Initial graph not connected...returning the largest connected subgraph..')
return connected_sub_graph
else:
def read_graph():
'''
Reads the input network in networkx.
'''
print 'asd'
if args.weighted:
G = nx.read_edgelist(args.input, nodetype = int,data=(('weight',float),), create_using=nx.DiGraph())
else:
G = nx.read_edgelist(args.input, nodetype = int, create_using=nx.DiGraph())
for edge in G.edges():
G[edge[0]][edge[1]]['weight'] = 1
if not args.directed:
G = G.to_undirected()
return G
def readFromFile(self, path):
self.depTree = NX.read_edgelist(path)
self.checkDepTree()