Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
def init_weights(self):
normal_init(self.conv_offset, std=0.1)
normal_init(self.conv_adaption, std=0.01)
def forward(self, x, shape):
offset = self.conv_offset(shape.detach())
x = self.relu(self.conv_adaption(x, offset))
return x
@HEADS.register_module
class GuidedAnchorHead(AnchorHead):
"""Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.).
This GuidedAnchorHead will predict high-quality feature guided
anchors and locations where anchors will be kept in inference.
There are mainly 3 categories of bounding-boxes.
- Sampled (9) pairs for target assignment. (approxes)
- The square boxes where the predicted anchors are based on.
(squares)
- Guided anchors.
Please refer to https://arxiv.org/abs/1901.03278 for more details.
Args:
num_classes (int): Number of classes.
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of hidden channels.
raise ValueError(
'Invalid upsample method {}, accepted methods '
'are "deconv", "nearest", "bilinear"'.format(upsample_method))
self.num_convs = num_convs
self.roi_feat_size = roi_feat_size # WARN: not used and reserved
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.conv_out_channels = conv_out_channels
self.upsample_method = upsample_method
self.upsample_ratio = upsample_ratio
self.num_classes = num_classes
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.fp16_enabled = False
self.loss_mask = build_loss(loss_mask)
self.convs = nn.ModuleList()
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
upsample_in_channels = (
self.conv_out_channels if self.num_convs > 0 else in_channels)
'Invalid upsample method {}, accepted methods '
'are "deconv", "nearest", "bilinear"'.format(upsample_method))
self.num_convs = num_convs
# WARN: roi_feat_size is reserved and not used
self.roi_feat_size = _pair(roi_feat_size)
self.in_channels = in_channels
self.conv_kernel_size = conv_kernel_size
self.conv_out_channels = conv_out_channels
self.upsample_method = upsample_method
self.upsample_ratio = upsample_ratio
self.num_classes = num_classes
self.class_agnostic = class_agnostic
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.fp16_enabled = False
self.loss_mask = build_loss(loss_mask)
self.convs = nn.ModuleList()
for i in range(self.num_convs):
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
in_channels,
self.conv_out_channels,
self.conv_kernel_size,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
upsample_in_channels = (
self.conv_out_channels if self.num_convs > 0 else in_channels)
x,
img_meta,
det_bboxes,
det_labels,
rescale=False):
# image shape of the first image in the batch (only one)
ori_shape = img_meta[0]['ori_shape']
scale_factor = img_meta[0]['scale_factor']
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes - 1)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
_bboxes = (
det_bboxes[:, :4] * scale_factor if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
mask_feats = self.mask_roi_extractor(
x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
mask_pred = self.mask_head(mask_feats)
segm_result = self.mask_head.get_seg_masks(
mask_pred, _bboxes, det_labels, self.test_cfg.rcnn, ori_shape,
scale_factor, rescale)
return segm_result
def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg):
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
# TODO more flexible
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
scale_factor, flip)
rois = bbox2roi([proposals])
# recompute feature maps to save GPU memory
roi_feats = self.bbox_roi_extractor(
x[:len(self.bbox_roi_extractor.featmap_strides)], rois)
if self.with_shared_head:
roi_feats = self.shared_head(roi_feats)
cls_score, bbox_pred = self.bbox_head(roi_feats)
bboxes, scores = self.bbox_head.get_det_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None)
aug_bboxes.append(bboxes)
aug_scores.append(scores)
roi_feats = self.shared_head(roi_feats)
cls_score, bbox_pred = self.bbox_head(roi_feats)
bboxes, scores = self.bbox_head.get_det_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=False,
cfg=None)
aug_bboxes.append(bboxes)
aug_scores.append(scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
det_bboxes, det_labels = multiclass_nms(
merged_bboxes, merged_scores, rcnn_test_cfg.score_thr,
rcnn_test_cfg.nms, rcnn_test_cfg.max_per_img)
return det_bboxes, det_labels
def test_retina_ghm_forward():
model, train_cfg, test_cfg = _get_detector_cfg(
'ghm/retinanet_ghm_r50_fpn_1x.py')
model['pretrained'] = None
from mmdet.models import build_detector
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)
input_shape = (3, 3, 224, 224)
mm_inputs = _demo_mm_inputs(input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
# Test forward train
gt_bboxes = mm_inputs['gt_bboxes']
gt_labels = mm_inputs['gt_labels']
losses = detector.forward(
imgs,
img_metas,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
return_loss=True)
def test_cascade_forward():
try:
from torchvision import _C as C # NOQA
except ImportError:
import pytest
raise pytest.skip('requires torchvision on cpu')
model, train_cfg, test_cfg = _get_detector_cfg(
'cascade_rcnn_r50_fpn_1x.py')
model['pretrained'] = None
# torchvision roi align supports CPU
model['bbox_roi_extractor']['roi_layer']['use_torchvision'] = True
from mmdet.models import build_detector
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)
input_shape = (1, 3, 256, 256)
# Test forward train with a non-empty truth batch
mm_inputs = _demo_mm_inputs(input_shape, num_items=[10])
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_bboxes = mm_inputs['gt_bboxes']
gt_labels = mm_inputs['gt_labels']
losses = detector.forward(
imgs,
img_metas,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
return_loss=True)
assert isinstance(losses, dict)
def test_rpn_forward():
model, train_cfg, test_cfg = _get_detector_cfg('rpn_r50_fpn_1x.py')
model['pretrained'] = None
from mmdet.models import build_detector
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)
input_shape = (1, 3, 224, 224)
mm_inputs = _demo_mm_inputs(input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
# Test forward train
gt_bboxes = mm_inputs['gt_bboxes']
losses = detector.forward(
imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
type='Corrupt',
corruption=corruption,
severity=corruption_severity)
# TODO: hard coded "1", we assume that the first step is
# loading images, which needs to be fixed in the future
test_data_cfg['pipeline'].insert(1, corruption_trans)
# print info
print('\nTesting {} at severity {}'.format(corruption,
corruption_severity))
# build the dataloader
# TODO: support multiple images per gpu
# (only minor changes are needed)
dataset = build_dataset(test_data_cfg)
data_loader = build_dataloader(
dataset,
imgs_per_gpu=1,
workers_per_gpu=args.workers,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_detector(
cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(
model, args.checkpoint, map_location='cpu')
# old versions did not save class info in checkpoints,
# this walkaround is for backward compatibility