How to use the mmdet.models.build_detector function in mmdet

To help you get started, we’ve selected a few mmdet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github open-mmlab / mmdetection / tests / test_forward.py View on Github external
def test_retina_ghm_forward():
    model, train_cfg, test_cfg = _get_detector_cfg(
        'ghm/retinanet_ghm_r50_fpn_1x.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (3, 3, 224, 224)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
github open-mmlab / mmdetection / tests / test_forward.py View on Github external
def test_cascade_forward():
    try:
        from torchvision import _C as C  # NOQA
    except ImportError:
        import pytest
        raise pytest.skip('requires torchvision on cpu')

    model, train_cfg, test_cfg = _get_detector_cfg(
        'cascade_rcnn_r50_fpn_1x.py')
    model['pretrained'] = None
    # torchvision roi align supports CPU
    model['bbox_roi_extractor']['roi_layer']['use_torchvision'] = True

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 256, 256)

    # Test forward train with a non-empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[10])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
github open-mmlab / mmdetection / tests / test_forward.py View on Github external
def test_rpn_forward():
    model, train_cfg, test_cfg = _get_detector_cfg('rpn_r50_fpn_1x.py')
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 224, 224)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    losses = detector.forward(
        imgs, img_metas, gt_bboxes=gt_bboxes, return_loss=True)
    assert isinstance(losses, dict)

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
github kemaloksuz / BoundingBoxGenerator / tools / train.py View on Github external
dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info('Distributed training: {}'.format(distributed))
    logger.info('Config:\n{}'.format(cfg.text))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}, deterministic: {}'.format(
            args.seed, args.deterministic))
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmdet_version=__version__,
            config=cfg.text,
            CLASSES=datasets[0].CLASSES)
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES
github open-mmlab / mmdetection / tools / train.py View on Github external
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, '{}.log'.format(timestamp))
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # log some basic info
    logger.info('Distributed training: {}'.format(distributed))
    logger.info('MMDetection Version: {}'.format(__version__))
    logger.info('Config:\n{}'.format(cfg.text))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}, deterministic: {}'.format(
            args.seed, args.deterministic))
        set_random_seed(args.seed, deterministic=args.deterministic)

    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)

    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        datasets.append(build_dataset(cfg.data.val))
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmdet_version=__version__,
            config=cfg.text,
            CLASSES=datasets[0].CLASSES)
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES
    train_detector(
        model,
github open-mmlab / mmdetection / mmdet / apis / inference.py View on Github external
Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model
github ming71 / mmdetection-annotated / tools / train.py View on Github external
else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init logger before other steps
    logger = get_root_logger(cfg.log_level)
    logger.info('Distributed training: {}'.format(distributed))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}'.format(args.seed))
        set_random_seed(args.seed)

    # ipdb.set_trace(context=35)
    #  搭建模型
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)

     # 将训练配置传入
    train_dataset = build_dataset(cfg.data.train)
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in checkpoints as meta data
        # 要注意的是,以前发布的模型是不存这个类别等信息的,
        # 用的默认COCO或者VOC参数,所以如果用以前训练好的模型检测时会提醒warning一下,无伤大雅
        cfg.checkpoint_config.meta = dict(
            mmdet_version=__version__,
            config=cfg.text,
            CLASSES=train_dataset.CLASSES)

    # add an attribute for visualization convenience
    model.CLASSES = train_dataset.CLASSES   # model的CLASSES属性本来没有的,但是python不用提前声明,再赋值的时候自动定义变量
    train_detector(
github open-mmlab / mmdetection / tools / get_flops.py View on Github external
def main():

    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (3, ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = Config.fromfile(args.config)
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg).cuda()
    model.eval()

    if hasattr(model, 'forward_dummy'):
        model.forward = model.forward_dummy
    else:
        raise NotImplementedError(
            'FLOPs counter is currently not currently supported with {}'.
            format(model.__class__.__name__))

    flops, params = get_model_complexity_info(model, input_shape)
    split_line = '=' * 30
    print('{0}\nInput shape: {1}\nFlops: {2}\nParams: {3}\n{0}'.format(
        split_line, input_shape, flops, params))
    print('!!!Please be cautious if you use the results in papers. '
          'You may need to check if all ops are supported and verify that the '
github kemaloksuz / BoundingBoxGenerator / mmdet / apis / inference.py View on Github external
Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model
github musket-ml / segmentation_training_pipeline / segmentation_pipeline / mmdetection.py View on Github external
def compile(self, *args, **kwargs):
        cfg = self.cfg
        self.model = build_detector(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)#init_detector(self.cfg, self.weightsPath, device='cuda:0')
        self.model.CLASSES = self.classes
        # custom_loss = args[1]
        #
        # if not custom_loss in ["multiclass", "regression"]:
        #     custom_loss_tf = keras.losses.get(custom_loss)
        #
        #     t_true = keras.layers.Input((self.output_dim,))
        #     t_pred = keras.layers.Input((self.output_dim,))
        #
        #     def grad1(y_true, y_pred):
        #         return tf.gradients(custom_loss_tf(y_true, y_pred), [y_true, y_pred], stop_gradients=[y_true])
        #
        #     def grad2(y_true, y_pred):
        #         return tf.gradients(grad1(y_true, y_pred), [y_true, y_pred], stop_gradients=[y_true])
        #
        #     def custom_loss_func(y_true, y_pred):