How to use the mayavi.core.pipeline_info.PipelineInfo function in mayavi

To help you get started, we’ve selected a few mayavi examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github enthought / mayavi / mayavi / modules / outline.py View on Github external
__version__ = 0

    # The `Outline` filter which can either be an instance of
    # `OutlineFilter` or `OutlineCornerFilter`. The `ObjectBase` class
    # is the superclass of both the `OutlineFilter` and the
    # `OutlineCornerFilter`.
    outline_filter = Property(Instance(tvtk.ObjectBase,
                                        allow_none=False), record=True)

    # Enum to set the outline type.
    outline_mode = Enum('full', 'cornered',
                        desc='if outline mode is "full" or "cornered"')

    actor = Instance(Actor, allow_none=False, record=True)

    input_info = PipelineInfo(datasets=['any'],
                              attribute_types=['any'],
                              attributes=['any'])

    # An outline source, optionally used to choose the bounds of the
    # outline.
    outline_source = Instance(tvtk.OutlineSource, ())

    bounds = DelegatesTo('outline_source',
                desc="the bounds of the outline: xmin, xmax, ymin, ymax")

    manual_bounds = Bool(
                desc="whether the bounds are automatically inferred from "
                     "the data source")

    # Create the UI for the traits.
github enthought / mayavi / mayavi / filters / greedy_terrain_decimation.py View on Github external
class GreedyTerrainDecimation(FilterBase):

    """ Performs a triangulation of image data after simplifying it. """

    # The version of this class.  Used for persistence.
    __version__ = 0

    # The actual TVTK filter that this class manages.
    filter = Instance(tvtk.GreedyTerrainDecimation, args=(),
                      allow_none=False, record=True)

    input_info = PipelineInfo(datasets=['any'],
                              attribute_types=['any'],
                              attributes=['any'])

    output_info = PipelineInfo(datasets=['poly_data'],
                               attribute_types=['any'],
                               attributes=['any'])
github enthought / mayavi / mayavi / modules / warp_vector_cut_plane.py View on Github external
cutter = Instance(Cutter, allow_none=False, record=True)

    # The WarpVectorCutPlane component that warps the data.
    warp_vector = Instance(WarpVector, allow_none=False, record=True)

    # Specify if vector normals are to be computed to make a smoother surface.
    compute_normals = Bool(False, desc='if normals are to be computed '\
                           'to make the warped surface smoother')

    # The component that computes the normals.
    normals = Instance(PolyDataNormals, record=True)

    # The Actor component.
    actor = Instance(Actor, allow_none=False, record=True)

    input_info = PipelineInfo(datasets=['any'],
                              attribute_types=['any'],
                              attributes=['vectors'])

    ########################################
    # View related traits.

    _warp_group = Group(Item(name='filter',
                             style='custom',
                             editor=\
                             InstanceEditor(view=
                                            View(Item('scale_factor')))),
                        show_labels=False)

    view = View(Group(Item(name='implicit_plane', style='custom'),
                      label='ImplicitPlane',
                      show_labels=False),
github enthought / mayavi / mayavi / sources / vrml_importer.py View on Github external
######################################################################
# `VRMLImporter` class.
######################################################################
class VRMLImporter(Source):

    __version__ = 0

    # The file name.
    file_name = Str('', enter_set=True, auto_set=False,
                    desc='the VRML file name')

    # The VRML importer.
    reader = Instance(tvtk.VRMLImporter, args=(), allow_none=False,
                      record=True)

    output_info = PipelineInfo(datasets=['none'])

    ###############
    # Private traits.

    # Our file path used for persistence
    _file_path = Instance(FilePath, args=())

    # Our View.
    view = View(Item(name='file_name', editor=FileEditor()))

    ######################################################################
    # `object` interface
    ######################################################################
    def __get_pure_state__(self):
        d = super(VRMLImporter, self).__get_pure_state__()
        # These traits are dynamically created.
github enthought / mayavi / mayavi / core / module.py View on Github external
# The (optional) components used by this module.  NOTE: This is
    # not pickled.  It is the developers responsibility to setup the
    # components when the component traits are set in the handler.
    components = List(record=False)

    # The icon
    icon = Str('module.ico')

    # The human-readable type for this object
    type = Str(' module')

    # Information about what this object can consume.
    input_info = PipelineInfo(datasets=['any'])

    # Information about what this object can produce.
    output_info = PipelineInfo(datasets=['none'])

    ######################################################################
    # `object` interface.
    ######################################################################
    def __init__(self, **traits):
        super(Module, self).__init__(**traits)

        # Let the module setup its pipeline.
        self.setup_pipeline()

    def __get_pure_state__(self):
        d = super(Module, self).__get_pure_state__()
        for x in ('module_manager', 'components'):
            d.pop(x, None)
        return d
github enthought / mayavi / mayavi / filters / cut_plane.py View on Github external
from mayavi.filters.collection import Collection
from mayavi.core.pipeline_info import PipelineInfo

################################################################################
# `CutPlane` class.
################################################################################
class CutPlane(Collection):
    """
    This class represents a cut plane that can be used to slice through
    any dataset.  It also provides a 3D widget interface to position and
    move the slice interactively.
    """
    # The version of this class.  Used for persistence.
    __version__ = 0

    input_info = PipelineInfo(datasets=['any'],
                              attribute_types=['any'],
                              attributes=['any'])
    output_info = PipelineInfo(datasets=['poly_data'],
                               attribute_types=['any'],
                               attributes=['any'])

    ######################################################################
    # `Filter` interface.
    ######################################################################
    def setup_pipeline(self):
        """Creates the pipeline."""
        ip = ImplicitPlane()
        cut = Cutter(cut_function=ip.plane)
        self.filters = [ip, cut]
github enthought / mayavi / mayavi / filters / extract_vector_components.py View on Github external
class ExtractVectorComponents(FilterBase):
    """ This wraps the TVTK ExtractVectorComponents filter and allows
    one to select any of the three components of an input vector data
    attribute."""

    # The version of this class.  Used for persistence.
    __version__ = 0

    # The actual TVTK filter that this class manages.
    filter = Instance(tvtk.ExtractVectorComponents, args=(), allow_none=False)

    # The Vector Component to be extracted
    component = Enum('x-component', 'y-component', 'z-component',
                     desc='component of the vector to be extracted')

    input_info = PipelineInfo(datasets=['any'],
                              attribute_types=['any'],
                              attributes=['vectors'])

    output_info = PipelineInfo(datasets=['any'],
                               attribute_types=['any'],
                               attributes=['any'])

    view = View(Group(Item(name='component')),
                resizable=True
                )

    ######################################################################
    # `Filter` interface.
    ######################################################################
    def update_pipeline(self):
        # Do nothing if there is no input.
github enthought / mayavi / mayavi / core / pipeline_base.py View on Github external
# The actors generated by this object that will be rendered on the
    # scene.  Changing this list while the actors are renderered *is*
    # safe and will do the right thing.
    actors = List(record=False)

    # The optional list of actors belonging to this object.  These
    # will be added to the scene at an appropriate time.  Changing
    # this list while the widgets are renderered *is* safe and will do
    # the right thing.
    widgets = List(record=False)

    # Information about what this object can consume.
    input_info = Instance(PipelineInfo)

    # Information about what this object can produce.
    output_info = Instance(PipelineInfo)

    ########################################
    # Events.

    # This event is fired when the pipeline has changed.
    pipeline_changed = Event(record=False)

    # This event is fired when the data alone changes but the pipeline
    # outputs are the same.
    data_changed = Event(record=False)

    ##################################################
    # Private traits.
    ##################################################
    # Identifies if `actors` and `widgets` are added to the `scene` or
    # not.
github enthought / mayavi / mayavi / filters / poly_data_normals.py View on Github external
######################################################################
# `PolyDataNormals` class.
######################################################################
class PolyDataNormals(PolyDataFilterBase):

    """Computes normals from input data.  This gives meshes a smoother
    appearance.  This should work for any input dataset.
    """

    # The version of this class.  Used for persistence.
    __version__ = 0

    # The actual TVTK filter that this class manages.
    filter = Instance(tvtk.PolyDataNormals, args=(), allow_none=False, record=True)

    input_info = PipelineInfo(datasets=['poly_data'],
                              attribute_types=['any'],
                              attributes=['any'])

    output_info = PipelineInfo(datasets=['poly_data'],
                               attribute_types=['any'],
                               attributes=['any'])
github enthought / mayavi / mayavi / modules / vector_cut_plane.py View on Github external
__version__ = 0

    # The implicit plane widget used to place the implicit function.
    implicit_plane = Instance(ImplicitPlane, allow_none=False,
                              record=True)

    # The cutter.  Takes a cut of the data on the implicit plane.
    cutter = Instance(Cutter, allow_none=False, record=True)

    # The Glyph component.
    glyph = Instance(Glyph, allow_none=False, record=True)

    # The Glyph component.
    actor = Instance(Actor, allow_none=False, record=True)

    input_info = PipelineInfo(datasets=['any'],
                              attribute_types=['any'],
                              attributes=['vectors'])

    ########################################
    # View related traits.

    view = View(Group(Item(name='implicit_plane', style='custom'),
                      label='ImplicitPlane',
                      show_labels=False),
                Group(Item(name='glyph', style='custom', resizable=True),
                      label='Glyph',
                      show_labels=False),
                Group(Item(name='actor', style='custom'),
                      label='Actor',
                      show_labels=False),
                )