Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_field_toggle_show_invalid_value_in_error_message(self):
error_messages = {"invalid": "Not valid: {input}"}
boolfield = fields.Boolean(error_messages=error_messages)
with pytest.raises(ValidationError) as excinfo:
boolfield.deserialize("notabool")
assert str(excinfo.value.args[0]) == "Not valid: notabool"
numfield = fields.Number(error_messages=error_messages)
with pytest.raises(ValidationError) as excinfo:
numfield.deserialize("notanum")
assert str(excinfo.value.args[0]) == "Not valid: notanum"
intfield = fields.Integer(error_messages=error_messages)
with pytest.raises(ValidationError) as excinfo:
intfield.deserialize("notanint")
assert str(excinfo.value.args[0]) == "Not valid: notanint"
date_error_messages = {"invalid": "Not a valid {obj_type}: {input}"}
datefield = fields.DateTime(error_messages=date_error_messages)
with pytest.raises(ValidationError) as excinfo:
datefield.deserialize("notadate")
assert str(excinfo.value.args[0]) == "Not a valid datetime: notadate"
self.title = title
self.year = year
self.author_id = author_id
def create(self):
db.session.add(self)
db.session.commit()
return self
class BookSchema(ModelSchema):
class Meta(ModelSchema.Meta):
model = Book
sqla_session = db.session
id = fields.Number(dump_only=True)
title = fields.String(required=True)
year = fields.Date(required=True)
author_id = fields.Integer()
from .entity import Entity, Base
class Exam(Entity, Base):
__tablename__ = 'exams'
title = Column(String)
description = Column(String)
def __init__(self, title, description, created_by):
Entity.__init__(self, created_by)
self.title = title
self.description = description
class ExamSchema(Schema):
id = fields.Number()
title = fields.Str()
description = fields.Str()
created_at = fields.DateTime()
updated_at = fields.DateTime()
last_updated_by = fields.Str()
from .base import BaseModel
from ..exceptions import UnknownProjectTask
class ProjectSchema(Schema):
hid = fields.Str()
title = fields.Str()
description = fields.Str(allow_none=True)
task = fields.Str()
hardware = fields.Str()
scope = fields.Str()
info = fields.Dict(allow_none=True)
created_at = fields.DateTime()
created_by = fields.Number()
experiments_cnt = fields.Number()
models_cnt = fields.Number()
datasets = fields.List(fields.Dict(), allow_none=True)
topalg = fields.List(fields.Dict(), allow_none=True)
total_timelog = fields.Number(allow_none=True)
compute_now = fields.Number()
insights = fields.List(fields.Dict(), allow_none=True)
@post_load
def make_project_instance(self, data):
return Project(**data)
class Project(BaseModel):
schema = ProjectSchema(strict=True)
def __init__(self, hid, title, description, task, hardware, scope, created_at, created_by,
models_cnt, compute_now, experiments_cnt = None, datasets = None, topalg = None,
insights = None, total_timelog = 0, info = None):
precision = fields.Number()
recall = fields.Number()
f1 = fields.Number()
roc_auc = fields.Number()
average_precision = fields.Number()
recall_at_20p = fields.Number()
class MetricsClusteringSchema(Schema):
adjusted_rand = fields.Number()
adjusted_mutual_info = fields.Number()
v_measure = fields.Number()
class MetricsDupDetectionSchema(Schema):
ratio_duplicates = fields.Number()
f1_same_duplicates = fields.Number()
mean_duplicates_count = fields.Number()
class _SearchResponseSchemaElement(DocumentIndexSchema):
score = fields.Number(required=True)
class SearchResponseSchema(Schema):
data = fields.Nested(_SearchResponseSchemaElement,
many=True, required=True)
pagination = fields.Nested(_ResponsePaginaton, required=True)
class CustomStopWordsSchema(Schema):
name = fields.Str(required=True)
redeemable_noncontrolling_interest = fields.Number()
temporary_equity = fields.Number()
equity = fields.Number()
equity_attributable_interest = fields.Number()
equity_attributable_parent = fields.Number()
stockholders_equity = fields.Number()
revenue = fields.Number()
cost_of_revenue = fields.Number()
gross_profit = fields.Number()
operating_expenses = fields.Number()
costs_and_expenses = fields.Number()
other_operating_income = fields.Number()
operating_income_loss = fields.Number()
nonoperating_income_loss = fields.Number()
interest_and_debt_expense = fields.Number()
income_before_equity_investments = fields.Number()
income_from_equity_investments = fields.Number()
income_tax_expense_benefit = fields.Number()
extraordary_items_gain_loss = fields.Number()
income_loss = fields.Number()
net_income_shareholders = fields.Number()
preferred_stock_dividends = fields.Number()
net_income_loss_noncontrolling = fields.Number()
net_income_parent = fields.Number()
net_income_loss = fields.Number()
other_comprehensive_income = fields.Number()
comprehensive_income = fields.Number()
comprehensive_income_parent = fields.Number()
comprehensive_income_interest = fields.Number()
net_cash_flows_operating = fields.Number()
net_cash_flows_investing = fields.Number()
net_cash_flows_financing = fields.Number()
preferred_stock_dividends = fields.Number()
net_income_loss_noncontrolling = fields.Number()
net_income_parent = fields.Number()
net_income_loss = fields.Number()
other_comprehensive_income = fields.Number()
comprehensive_income = fields.Number()
comprehensive_income_parent = fields.Number()
comprehensive_income_interest = fields.Number()
net_cash_flows_operating = fields.Number()
net_cash_flows_investing = fields.Number()
net_cash_flows_financing = fields.Number()
net_cash_flows_operating_continuing = fields.Number()
net_cash_flows_investing_continuing = fields.Number()
net_cash_flows_financing_continuing = fields.Number()
net_cash_flows_operating_discontinued = fields.Number()
net_cash_flows_investing_discontinued = fields.Number()
net_cash_flows_discontinued = fields.Number()
class Unique(object):
def __init__(self):
return None
class TreeSchema(Schema):
id = fields.Int(required=True)
parent = fields.Int(allow_none=True, required=True)
subject = fields.Str()
children = fields.Nested('self', many=True)
class EmailThreadingSchema(Schema):
id = fields.Str(required=True)
data = fields.Nested(TreeSchema, many=True)
class MetricsCategorizationSchema(Schema):
precision = fields.Number()
recall = fields.Number()
f1 = fields.Number()
roc_auc = fields.Number()
average_precision = fields.Number()
recall_at_20p = fields.Number()
class MetricsClusteringSchema(Schema):
adjusted_rand = fields.Number()
adjusted_mutual_info = fields.Number()
v_measure = fields.Number()
class MetricsDupDetectionSchema(Schema):
ratio_duplicates = fields.Number()
f1_same_duplicates = fields.Number()
Constant:
value: 3
```
"""
IDENTIFIER = "Constant"
SCHEMA = ConstantInitializerSchema
def __init__(self, value=0, dtype="float32"):
self.dtype = dtype
self.value = value
class UniformInitializerSchema(BaseSchema):
minval = fields.Number(allow_none=True)
maxval = fields.Number(allow_none=True)
dtype = DType(allow_none=True)
seed = fields.Int(allow_none=True)
@staticmethod
def schema_config():
return UniformInitializerConfig
class UniformInitializerConfig(BaseConfig):
"""Initializer that generates tensors with a uniform distribution.
Args:
minval: A python scalar or a scalar tensor. Lower bound of the range
of random values to generate.
maxval: A python scalar or a scalar tensor. Upper bound of the range
of random values to generate. Defaults to 1 for float types.
import asyncio
import json
from marshmallow import Schema, fields, post_load
from aiocache import Cache
class MyType:
def __init__(self, x, y):
self.x = x
self.y = y
class MyTypeSchema(Schema):
x = fields.Number()
y = fields.Number()
@post_load
def build_object(self, data, **kwargs):
return MyType(data['x'], data['y'])
def dumps(value):
return MyTypeSchema().dumps(value)
def loads(value):
return MyTypeSchema().loads(value)
cache = Cache(Cache.REDIS, namespace="main")