Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_jit(self, device):
@torch.jit.script
def op_script(input: torch.Tensor, height: int,
width: int) -> torch.Tensor:
return kornia.denormalize_pixel_coordinates(input, height, width)
height, width = 3, 4
grid = kornia.utils.create_meshgrid(
height, width, normalized_coordinates=True).to(device)
actual = op_script(grid, height, width)
expected = kornia.denormalize_pixel_coordinates(
grid, height, width)
assert_allclose(actual, expected)
@pytest.mark.skip(reason="turn off all jit for a while")
def test_jit(self, device):
op = kornia.denormalize_pixel_coordinates
op_script = torch.jit.script(op)
height, width = 3, 4
grid = kornia.utils.create_meshgrid(
height, width, normalized_coordinates=True).to(device)
actual = op_script(grid, height, width)
expected = op(grid, height, width)
assert_allclose(actual, expected)
def test_jit(self):
batch_size, channels, height, width = 2, 3, 64, 64
img = torch.ones(batch_size, channels, height, width)
gray = kornia.color.RgbToGrayscale()
gray_traced = torch.jit.trace(kornia.color.RgbToGrayscale(), img)
assert_allclose(gray(img), gray_traced(img))
def test_jit(self):
batch_size, channels, height, width = 2, 3, 64, 64
img = torch.ones(batch_size, channels, height, width)
gray = kornia.color.RgbToGrayscale()
gray_traced = torch.jit.trace(kornia.color.RgbToGrayscale(), img)
assert_allclose(gray(img), gray_traced(img))
def test_jit(self, device):
@torch.jit.script
def op_script(input, k):
return kornia.feature.harris_response(input, k)
k = torch.tensor(0.04)
img = torch.rand(2, 3, 4, 5, device=device)
actual = op_script(img, k)
expected = kornia.feature.harris_response(img, k)
assert_allclose(actual, expected)
@pytest.mark.skip(reason="turn off all jit for a while")
def test_jit(self, device):
@torch.jit.script
def op_script(input):
return kornia.quaternion_to_rotation_matrix(input)
quaternion = torch.tensor([0., 0., 1., 0.]).to(device)
actual = op_script(quaternion)
expected = kornia.quaternion_to_rotation_matrix(quaternion)
assert_allclose(actual, expected)
def test_jit(self, device):
@torch.jit.script
def op_script(input):
return kornia.quaternion_to_rotation_matrix(input)
quaternion = torch.tensor([0., 0., 1., 0.]).to(device)
actual = op_script(quaternion)
expected = kornia.quaternion_to_rotation_matrix(quaternion)
assert_allclose(actual, expected)
def test_jit(self, device):
@torch.jit.script
def op_script(input):
return kornia.filters.sobel(input)
img = torch.rand(2, 3, 4, 5).to(device)
actual = op_script(img)
expected = kornia.filters.sobel(img)
assert_allclose(actual, expected)
def test_jit(self, device):
@torch.jit.script
def op_script(
input: torch.Tensor,
ksize: int,
angle: float,
direction: float
) -> torch.Tensor:
return kornia.filters.motion_blur(input, ksize, angle, direction)
img = torch.rand(2, 3, 4, 5).to(device)
ksize = 5
angle = 65.
direction = .1
actual = op_script(img, ksize, angle, direction)
expected = kornia.filters.motion_blur(img, ksize, angle, direction)
assert_allclose(actual, expected)
def test_jit(self):
@torch.jit.script
def op_script(transform, points):
return kornia.transform_points(transform, points)
points = torch.ones(1, 2, 2)
transform = torch.eye(3)[None]
actual = op_script(transform, points)
expected = kornia.transform_points(transform, points)
assert_allclose(actual, expected)