Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
"""
import torch
import kornia
import cv2
import numpy as np
import matplotlib.pyplot as plt
#############################
# We use OpenCV to load an image to memory represented in a numpy.ndarray
img_bgr: np.ndarray = cv2.imread('./data/arturito.jpeg') # HxWxC
#############################
# The image is convert to a 4D torch tensor
x_bgr: torch.tensor = kornia.image_to_tensor(img_bgr) # 1xCxHxW
#############################
# Once with a torch tensor we can use any Kornia operator
x_rgb: torch.tensor = kornia.bgr_to_rgb(x_bgr) # 1xCxHxW
#############################
# Convert back to numpy to visualize
img_rgb: np.ndarray = kornia.tensor_to_image(x_rgb.byte()) # HxWxC
#############################
# We use Matplotlib to visualize de results
fig, axs = plt.subplots(1, 2, figsize=(32, 16))
axs = axs.ravel()
axs[0].axis('off')
axs[0].imshow(img_bgr)
from matplotlib import pyplot as plt
import cv2
import numpy as np
import torch
import kornia
import torchvision
#############################
# We use OpenCV to load an image to memory represented in a numpy.ndarray
img_bgr: np.ndarray = cv2.imread('./data/ninja_turtles.jpg', cv2.IMREAD_COLOR)
#############################
# Convert the numpy array to torch
x_bgr: torch.Tensor = kornia.image_to_tensor(img_bgr)
x_rgb: torch.Tensor = kornia.bgr_to_rgb(x_bgr)
#############################
# Create batch and normalize
x_rgb = x_rgb.expand(4, -1, -1, -1) # 4xCxHxW
x_rgb = x_rgb.float() / 255.
def imshow(input: torch.Tensor):
out: torch.Tensor = torchvision.utils.make_grid(input, nrow=2, padding=5)
out_np: np.ndarray = kornia.tensor_to_image(out)
plt.imshow(out_np)
plt.axis('off')
#############################
# Show original
"""
import torch
import kornia
import cv2
import numpy as np
import matplotlib.pyplot as plt
# read the image with OpenCV
img: np.ndarray = cv2.imread('./data/lena.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# convert to torch tensor
data: torch.tensor = kornia.image_to_tensor(img, keepdim=False) # BxCxHxW
# create the operator
gauss = kornia.filters.GaussianBlur2d((11, 11), (10.5, 10.5))
# blur the image
x_blur: torch.tensor = gauss(data.float())
# convert back to numpy
img_blur: np.ndarray = kornia.tensor_to_image(x_blur.byte())
# Create the plot
fig, axs = plt.subplots(1, 2, figsize=(16, 10))
axs = axs.ravel()
axs[0].axis('off')
axs[0].set_title('image source')
import torch
import kornia
import cv2
import numpy as np
import matplotlib.pyplot as plt
# read the image with OpenCV
img: np.ndarray = cv2.imread('./data/doraemon.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
img = img + np.random.normal(loc=0.0, scale=0.1, size=img.shape)
img = np.clip(img, 0.0, 1.0)
# convert to torch tensor
noisy_image: torch.tensor = kornia.image_to_tensor(img).squeeze() # CxHxW
# define the total variation denoising network
class TVDenoise(torch.nn.Module):
def __init__(self, noisy_image):
super(TVDenoise, self).__init__()
self.l2_term = torch.nn.MSELoss(reduction='mean')
self.regularization_term = kornia.losses.TotalVariation()
# create the variable which will be optimized to produce the noise free image
self.clean_image = torch.nn.Parameter(data=noisy_image.clone(), requires_grad=True)
self.noisy_image = noisy_image
def forward(self):
return self.l2_term(self.clean_image, self.noisy_image) + 0.0001 * self.regularization_term(self.clean_image)
def get_clean_image(self):
from matplotlib import pyplot as plt
import cv2
import numpy as np
import torch
import kornia
import torchvision
#############################
# We use OpenCV to load an image to memory represented in a numpy.ndarray
img_bgr: np.ndarray = cv2.imread('./data/simba.png', cv2.IMREAD_COLOR)
#############################
# Convert the numpy array to torch
x_bgr: torch.Tensor = kornia.image_to_tensor(img_bgr)
#############################
# Using `kornia` we easily perform color transformation in batch mode.
def hflip(input: torch.Tensor) -> torch.Tensor:
return torch.flip(input, [-1])
def vflip(input: torch.Tensor) -> torch.Tensor:
return torch.flip(input, [-2])
def rot180(input: torch.Tensor) -> torch.Tensor:
return torch.flip(input, [-2, -1])
from matplotlib import pyplot as plt
import cv2
import numpy as np
import torch
import kornia
import torchvision
#############################
# We use OpenCV to load an image to memory represented in a numpy.ndarray
img_bgr: np.ndarray = cv2.imread('./data/drslump.jpg', cv2.IMREAD_COLOR)
#############################
# Convert the numpy array to torch
x_bgr: torch.Tensor = kornia.image_to_tensor(img_bgr)
x_rgb: torch.Tensor = kornia.bgr_to_rgb(x_bgr)
#############################
# Create batch and normalize
x_rgb = x_rgb.expand(2, -1, -1, -1) # 4xCxHxW
x_rgb = x_rgb.float() / 255.
def imshow(input: torch.Tensor):
out: torch.Tensor = torchvision.utils.make_grid(input, nrow=2, padding=1)
out_np: np.ndarray = kornia.tensor_to_image(out)
plt.imshow(out_np)
plt.axis('off')
#############################
# Show original
"""
import torch
import kornia
import cv2
import numpy as np
import matplotlib.pyplot as plt
# read the image with OpenCV
img: np.ndarray = cv2.imread('./data/bruce.png')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# convert to torch tensor
data: torch.tensor = kornia.image_to_tensor(img, keepdim=False) # BxCxHxW
# the source points are the region to crop corners
points_src = torch.tensor([[
[125., 150.], [562., 40.], [562., 282.], [54., 328.],
]])
# the destination points are the image vertexes
h, w = 64, 128 # destination size
points_dst = torch.tensor([[
[0., 0.], [w - 1., 0.], [w - 1., h - 1.], [0., h - 1.],
]])
# compute perspective transform
M: torch.tensor = kornia.get_perspective_transform(points_src, points_dst)
# warp the original image by the found transform