Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_merge_overlap():
(X_train, y_train), (X_test, y_test) = _get_test_data()
left = Sequential()
left.add(Dense(nb_hidden, input_shape=(input_dim,)))
left.add(Activation('relu'))
model = Sequential()
model.add(Merge([left, left], mode='sum'))
model.add(Dense(nb_class))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, y_test))
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=2, validation_split=0.1)
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, shuffle=False)
model.train_on_batch(X_train[:32], y_train[:32])
loss = model.evaluate(X_test, y_test, verbose=0)
model.predict(X_test, verbose=0)
model.add(Dropout(0.25))
model.add(Convolution2D(nb_filters*2, nb_conv, nb_conv, border_mode='valid', input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
hist = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=1, validation_data=(X_valid, Y_valid))
Train_Result_Optimizer = hist.history
Train_Loss = np.asarray(Train_Result_Optimizer.get('loss'))
Train_Loss = np.array([Train_Loss]).T
Valid_Loss = np.asarray(Train_Result_Optimizer.get('val_loss'))
Valid_Loss = np.asarray([Valid_Loss]).T
Pool_Train_Loss = Train_Loss
Pool_Valid_Loss = Valid_Loss
print('Evaluating Test Accuracy Without Acquisition')
score, acc = model.evaluate(X_test, Y_test, show_accuracy=True, verbose=0)
all_accuracy = acc
def get_model():
inputs = Input((IMAGE_H, IMAGE_W, INPUT_CHANNELS))
base = models.get_fcn_vgg16_32s(inputs, NUMBER_OF_CLASSES)
#base = models.get_fcn_vgg16_16s(inputs, NUMBER_OF_CLASSES)
#base = models.get_fcn_vgg16_8s(inputs, NUMBER_OF_CLASSES)
#base = models.get_unet(inputs, NUMBER_OF_CLASSES)
#base = models.get_segnet_vgg16(inputs, NUMBER_OF_CLASSES)
# softmax
reshape= Reshape((-1,NUMBER_OF_CLASSES))(base)
act = Activation('softmax')(reshape)
model = Model(inputs=inputs, outputs=act)
model.compile(optimizer=Adadelta(), loss='categorical_crossentropy')
#print(model.summary())
#sys.exit()
return model
model.add(Convolution2D(256, 3, 3,
border_mode='same',
init='he_uniform'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2)))
#model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(4096, init='he_uniform'))
model.add(Activation('relu'))
model.add(Dense(4096, init='he_uniform'))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(1, init='glorot_uniform'))
model.add(Activation('linear'))
# setting sgd optimizer parameters
adam = Adam(lr = 0.01, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-8)
#sgd = SGD(lr = 0.1, decay = 1e-6, momentum = 0.9, nesterov = True)
model.compile(loss='mean_squared_error', optimizer='adam')
earlystop = callbacks.EarlyStopping(monitor='val_loss', patience = 5,
verbose=1, mode='min')
checkpoint = callbacks.ModelCheckpoint('/tmp/weights.hdf5',
monitor='val_loss', verbose=1, save_best_only=True, mode='auto')
history = callbacks.History()
print("Starting training")
model.fit(X_train, y_train, batch_size=32, validation_split=0.15, nb_epoch=25,
show_accuracy=False, callbacks = [earlystop, checkpoint, history])
:param block_name: string, name of the bottleneck block, default "block1".
:param unit_name: string, name of the unit(residual block), default "unit1".
:param weight_decay: float, default 1e-4.
:param kernel_initializer: string, default "he_normal".
:param bn_epsilon: float, default 1e-3.
:param bn_momentum: float, default 0.99.
:return: 4-D tensor, shape of (batch_size, height, width, channel).
"""
depth_in = int(inputs.shape[-1])
conv_name_base = block_name+"_"+unit_name+"_conv"
bn_name_base = block_name+"_"+unit_name+"_bn"
# pre-activation and batch normalization
preact = BatchNormalization(name=bn_name_base+"0", epsilon=bn_epsilon, momentum=bn_momentum)(inputs)
preact = Activation("relu")(preact)
# determine convolutional or identity connection
if depth_in == depth:
x_shortcut = MaxPooling2D(pool_size=(1, 1), strides=stride)(inputs) if stride > 1 else inputs
else:
x_shortcut = Conv2D(depth, (1, 1), strides=(stride, stride), name=conv_name_base + "short",
use_bias=False, activation=None, kernel_initializer=kernel_initializer,
kernel_regularizer=l2(weight_decay))(preact)
x_shortcut = BatchNormalization(name=bn_name_base + "short", epsilon=bn_epsilon,
momentum=bn_momentum)(x_shortcut)
x = SeparableConv2D(base_depth, (1, 1), strides=(1, 1), padding="same", name=conv_name_base + "2a",
use_bias=False, activation=None, kernel_initializer=kernel_initializer,
kernel_regularizer=l2(weight_decay))(preact)
x = BatchNormalization(name=bn_name_base + "2a", epsilon=bn_epsilon, momentum=bn_momentum)(x)
x = Activation("relu")(x)
model.add(Dropout(0.25))
model.add(Convolution2D(nb_filters*2, nb_conv, nb_conv, border_mode='valid', input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
hist = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=1, validation_data=(X_valid, Y_valid))
Train_Result_Optimizer = hist.history
Train_Loss = np.asarray(Train_Result_Optimizer.get('loss'))
Train_Loss = np.array([Train_Loss]).T
Valid_Loss = np.asarray(Train_Result_Optimizer.get('val_loss'))
Valid_Loss = np.asarray([Valid_Loss]).T
#Accumulate the training and validation/test loss after every pooling iteration - for plotting
Pool_Valid_Loss = np.append(Pool_Valid_Loss, Valid_Loss, axis=1)
Pool_Train_Loss = np.append(Pool_Train_Loss, Train_Loss, axis=1)
print('Evaluate Model Test Accuracy with pooled points')
def build_model(self, params):
hidden_layers = params['hidden_layers']
input_dim = params['feat_size']
output_dim = params['phone_vocab_size']
drop_prob = params['drop_prob_encoder']
self.nLayers = len(hidden_layers)
# first layer takes input data
self.model.add(Dense(hidden_layers[0], input_dim=input_dim, init='uniform'))
self.model.add(Activation('sigmoid'))
self.model.add(Dropout(drop_prob))
# hidden layers
for i in xrange(1,len(hidden_layers)):
self.model.add(Dense(hidden_layers[i], input_dim=hidden_layers[i-1],
init='uniform'))
self.model.add(Activation('sigmoid'))
self.model.add(Dropout(drop_prob))
#output layer
self.model.add(Dense(output_dim, input_dim=hidden_layers[-1], init='uniform'))
self.model.add(Activation('softmax'))
if params['solver'] == 'sgd':
self.solver = SGD(lr=params['lr'], decay=1-params['decay_rate'], momentum=0.9, nesterov=True)
else:
raise ValueError('ERROR in MLP: %s --> This solver type is not yet supported '%(params['solver']))
self.model.compile(loss='categorical_crossentropy', optimizer=self.solver)
#score = model.evaluate(test_x)
self.f_train = self.model.train_on_batch
return self.f_train
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = concatenate([pls, x], axis=2) # concat as different channels
x = Convolution1D(filters=1,
kernel_size=15,
padding='same',
strides=1)(x)
# tanh activation (GAN hacks)
#x = Activation('tanh')(x)
vuv = Activation('sigmoid')(vuv)
y = multiply([vuv, pls]) # voicing gate for deterministic component
x = add([x, y])
#x = add([pls, x]) # force additivity
# remove singleton outer dimension
x = Reshape((output_dim,))(x)
model = Model(inputs=[pls_input, noise_input, vuv_input], outputs=[x],
name="generator")
return model
compression = 1.0 - reduction
# Initial convolution
if subsample_initial_block:
initial_kernel = (7, 7)
initial_strides = (2, 2)
else:
initial_kernel = (3, 3)
initial_strides = (1, 1)
x = Conv2D(nb_filter, initial_kernel, kernel_initializer='he_normal', padding='same',
strides=initial_strides, use_bias=False, kernel_regularizer=l2(weight_decay))(img_input)
if subsample_initial_block:
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
# Add dense blocks
for block_idx in range(nb_dense_block - 1):
x, nb_filter = __dense_block(x, nb_layers[block_idx], nb_filter, growth_rate, bottleneck=bottleneck,
dropout_rate=dropout_rate, weight_decay=weight_decay, attention_module=attention_module)
# add transition_block
x = __transition_block(x, nb_filter, compression=compression,
weight_decay=weight_decay, attention_module=attention_module)
nb_filter = int(nb_filter * compression)
# The last dense_block does not have a transition_block
x, nb_filter = __dense_block(x, final_nb_layer, nb_filter, growth_rate, bottleneck=bottleneck,
dropout_rate=dropout_rate, weight_decay=weight_decay, attention_module=attention_module)
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
Pool_Valid_Loss = np.zeros(shape=(nb_epoch, 1))
Pool_Train_Loss = np.zeros(shape=(nb_epoch, 1))
Pool_Valid_Acc = np.zeros(shape=(nb_epoch, 1))
Pool_Train_Acc = np.zeros(shape=(nb_epoch, 1))
x_pool_All = np.zeros(shape=(1))
Y_train = np_utils.to_categorical(y_train, nb_classes)
print('Training Model Without Acquisitions in Experiment', e)
model = Sequential()
model.add(Convolution2D(nb_filters, nb_conv, nb_conv, border_mode='valid', input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Convolution2D(nb_filters*2, nb_conv, nb_conv, border_mode='valid', input_shape=(1, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, nb_conv, nb_conv))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
c = 10
Weight_Decay = c / float(X_train.shape[0])
model.add(Flatten())
model.add(Dense(128, W_regularizer=l2(Weight_Decay)))
model.add(Activation('relu'))
model.add(Dropout(0.5))