How to use the keras.layers.MaxPooling2D function in keras

To help you get started, we’ve selected a few keras examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github lukaszbinden / pediatric-bone-age-prediction / src / models / arch_benchmark / se_resnet_rsna.py View on Github external
- `avg` means that global average pooling
                will be applied to the output of the
                last convolutional layer, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
    Returns: a Keras Model
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
    N = list(depth)

    # block 1 (initial conv block)
    x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, strides=(2, 2),
               kernel_initializer='he_normal', kernel_regularizer=l2(weight_decay))(img_input)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    # block 2 (projection block)
    for i in range(N[0]):
        if bottleneck:
            x = _resnet_bottleneck_block(x, filters[0], width)
        else:
            x = _resnet_block(x, filters[0], width)

    # block 3 - N
    for k in range(1, len(N)):
        if bottleneck:
            x = _resnet_bottleneck_block(x, filters[k], width, strides=(2, 2))
        else:
            x = _resnet_block(x, filters[k], width, strides=(2, 2))

        for i in range(N[k] - 1):
github mrkolarik / 3D-brain-segmentation / 2D-unet.py View on Github external
inputs = Input((img_rows, img_cols, 1))
    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)
    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)
    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)

    up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)
    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)

    up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)
    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)

    up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)
    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)
github scrssys / semantic_segment_RSImage / train / semantic_segmentation_networks.py View on Github external
# Block 1
    block1_conv1 = Conv2D(64,(3, 3),activation='relu',padding='same')(inputs)
    block1_conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(block1_conv1)
    block1_pool=MaxPooling2D((2, 2), strides=(2, 2))(block1_conv2)

    # Block 2
    block2_conv1 = Conv2D(128, (3, 3), activation='relu', padding='same')(block1_pool)
    block2_conv2 = Conv2D(128, (3, 3), activation='relu', padding='same')(block2_conv1)
    block2_pool = MaxPooling2D((2, 2), strides=(2, 2))(block2_conv2)

    # Block 3
    block3_conv1 = Conv2D(256, (3, 3), activation='relu', padding='same')(block2_pool)
    block3_conv2 = Conv2D(256, (3, 3), activation='relu', padding='same')(block3_conv1)
    block3_conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(block3_conv2)
    block3_pool = MaxPooling2D((2, 2), strides=(2, 2))(block3_conv3)

    # Block 4
    block4_conv1 = Conv2D(512, (3, 3), activation='relu', padding='same')(block3_pool)
    block4_conv2 = Conv2D(512, (3, 3), activation='relu', padding='same')(block4_conv1)
    block4_conv3 = Conv2D(512, (3, 3), activation='relu', padding='same')(block4_conv2)
    block4_pool = MaxPooling2D((2, 2), strides=(2, 2))(block4_conv3)

    # Block 5
    block5_conv1 = Conv2D(512, (3, 3), activation='relu', padding='same')(block4_pool)
    block5_conv2 = Conv2D(512, (3, 3), activation='relu', padding='same')(block5_conv1)
    block5_conv3 = Conv2D(512, (3, 3), activation='relu', padding='same')(block5_conv2)
    block5_pool = MaxPooling2D((2, 2), strides=(2, 2))(block5_conv3)

    # The following blocks were added by qiaozh--------------------------------------------
    # Block6
    block6_conv = Conv2D(4096,(7,7), activation='relu', padding='same')(block5_pool)
github foamliu / 3D-Object-Detection / model.py View on Github external
# Encoder
    input_tensor = Input(shape=(320, 320, 3))
    x = ZeroPadding2D((1, 1))(input_tensor)
    x = Conv2D(64, (kernel, kernel), activation='relu', name='conv1_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(64, (kernel, kernel), activation='relu', name='conv1_2')(x)
    orig_1 = x
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)

    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(128, (kernel, kernel), activation='relu', name='conv2_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(128, (kernel, kernel), activation='relu', name='conv2_2')(x)
    orig_2 = x
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)

    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(256, (kernel, kernel), activation='relu', name='conv3_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(256, (kernel, kernel), activation='relu', name='conv3_2')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(256, (kernel, kernel), activation='relu', name='conv3_3')(x)
    orig_3 = x
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)

    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (kernel, kernel), activation='relu', name='conv4_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (kernel, kernel), activation='relu', name='conv4_2')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (kernel, kernel), activation='relu', name='conv4_3')(x)
github YonghaoXu / SSUN / SSUN.py View on Github external
def MCNN_RS(num_PC,img_rows,img_cols):
    CNNInput = Input(shape=[num_PC,img_rows,img_cols],name='CNNInput')

    CONV1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same', name='CONV1')(CNNInput)
    POOL1 = MaxPooling2D((1, 2, 2), strides=(2,2), name='POOL1')(CONV1)
    CONV2 = Convolution2D(32, 3, 3, activation='relu', border_mode='same', name='CONV2')(POOL1)
    POOL2 = MaxPooling2D((1,2, 2), strides=(2,2), name='POOL2')(CONV2)
    CONV3 = Convolution2D(32, 3, 3, activation='relu', border_mode='same', name='CONV3')(POOL2)
    POOL3 = MaxPooling2D((1,2,2), strides=(2,2), name='POOL3')(CONV3)
    
    FLATTEN1 = Flatten(name='FLATTEN1')(POOL1)
    FLATTEN2 = Flatten(name='FLATTEN2')(POOL2)
    FLATTEN3 = Flatten(name='FLATTEN3')(POOL3)
    
    DENSE1 = Dense(128,activation='relu', name='DENSE1')(FLATTEN1)
    DENSE2 = Dense(128,activation='relu', name='DENSE2')(FLATTEN2)
    DENSE3 = Dense(128,activation='relu', name='DENSE3')(FLATTEN3)
    
    CNNDense = merge([DENSE1, DENSE2, DENSE3], mode='sum', name='CNNDense')

    
    CNNSOFTMAX = Dense(nb_classes,activation='softmax', name='CNNSOFTMAX')(CNNDense)
    
    
    model = Model(input=[CNNInput], output=[CNNSOFTMAX])
github scorelab / OpenDF / OpenDF-Describe-Image / src / models / resnet50.py View on Github external
img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor)
        else:
            img_input = input_tensor
    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)
    x = Convolution2D(64, 7, 7, subsample=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
github dulex123 / manga / unet.py View on Github external
inputs = Input((isz, isz, 1))
    conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(inputs)
    conv1 = Conv2D(32, (3, 3), activation="relu", padding="same")(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(pool1)
    conv2 = Conv2D(64, (3, 3), activation="relu", padding="same")(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(pool2)
    conv3 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(pool3)
    conv4 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(pool4)
    conv5 = Conv2D(512, (3, 3), activation="relu", padding="same")(conv5)

    up6 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4], 3)
    up6 = Dropout(0.5)(up6)
    conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(up6)
    conv6 = Conv2D(256, (3, 3), activation="relu", padding="same")(conv6)

    up7 = concatenate([UpSampling2D(size=(2, 2))(conv6), conv3], 3)
    up7 = Dropout(0.5)(up7)
    conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(up7)
    conv7 = Conv2D(128, (3, 3), activation="relu", padding="same")(conv7)

    up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2], 3)
    up8 = Dropout(0.5)(up8)
github jaybutera / tetrisRL / evaluate.py View on Github external
if __name__ == '__main__':
    width, height = 10, 20 # standard tetris friends rules
    batch_size = 20
    epoch_size = 1000
    nb_epochs = 100

    engine = TetrisEngine(width, height)
    reinforcer = TetrisReinforcer(engine)

    input = Input(shape=(width, height), dtype='float32')
    reshape = Reshape((1, width, height))(input)
    conv = Convolution2D(32, 2, 2)(reshape)
    dropout = Dropout(0.5)(conv)
    maxpool = MaxPooling2D((2, 2))(dropout)
    flat = Flatten()(maxpool)
    dense = Dense(engine.nb_actions, activation='softmax')(flat)
    model = ReinforcementModel(input=[input], output=[dense])
    model.compile('sgd')

    # try training a regular model
    # model_normal = Model(input=[input], output=[output])
    # model_normal.compile('sgd', 'mse')
    # print(model_normal.predict([np.asarray([engine.board])]))

    fit_reinforcement(model, reinforcer, batch_size, epoch_size, nb_epochs)
github liamconnor / single_pulse_ml / single_pulse_ml / frbkeras.py View on Github external
"""

    if train_data is not None:
        nfreq=train_data.shape[1]
        ntime=train_data.shape[2]

    model = Sequential()
    # this applies 32 convolution filters of size 5x5 each.
    model.add(Conv2D(nfilt1, (5, 5), activation='relu', input_shape=(nfreq, ntime, 1)))

    #model.add(Conv2D(32, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    # Randomly drop some fraction of nodes (set weights to 0)
    model.add(Dropout(0.4)) 
    model.add(Conv2D(nfilt2, (5, 5), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.4)) 
    model.add(Flatten())

    if features_only is True:
        model.add(BatchNormalization()) # hack
        return model, [] 

    model.add(Dense(256, activation='relu')) # should be 1024 hack

#    model.add(Dense(1024, activation='relu')) # remove for now hack
    model.add(Dropout(0.5))
    model.add(Dense(2, activation='softmax'))

    sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])
github foamliu / Scene-Understanding / model.py View on Github external
x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv2_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv2_2')(x)
    orig_2 = x
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)

    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv3_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv3_2')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv3_3')(x)
    orig_3 = x
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)

    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv4_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv4_2')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv4_3')(x)
    orig_4 = x
    x = MaxPooling2D((2, 2), strides=(2, 2))(x)

    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv5_1')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv5_2')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(512, (3, 3), activation='relu', kernel_initializer='he_normal', name='conv5_3')(x)