Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def load_rec():
return load(join(get_output_dir(), 'benchmark', 'rec.pkl'))
# compute_rec()
exp_dirs = join(get_output_dir(), 'single_exp', '17')
models = []
rec = load_rec()
mask_img = fetch_mask()
masker = MultiNiftiMasker(mask_img=mask_img).fit()
for exp_dir in [exp_dirs]:
estimator = load(join(exp_dirs, 'estimator.pkl'))
transformer = load(join(exp_dirs, 'transformer.pkl'))
for coef, (dataset, sc), (_, lbin) in zip(estimator.coef_, transformer.scs_.items(),
transformer.lbins_.items()):
print(dataset)
classes = lbin.classes_
print(classes)
coef /= sc.scale_
coef_rec = coef.dot(rec)
# coef_rec -= np.mean(coef_rec, axis=0)
print(join(exp_dirs, 'maps_%s.nii.gz' % dataset))
imgs = masker.inverse_transform(coef_rec)
imgs.to_filename(join(exp_dirs, 'maps_%s.nii.gz' % dataset))
fig, axes = plt.subplots(len(classes) // 4, 4, figsize=(24, len(classes) // 4 * 3))
axes = axes.ravel()
for ax, img, this_class in zip(axes, iter_img(imgs), classes):
this_class = this_class.replace('_', ' ')
this_class = this_class.replace('&', ' ')
def run(n_jobs=1, n_epochs=10):
# Exp def
redundancies = [25]
global_exp = dict(n_components=100, alpha=1,
l1_ratio=0,
pen_l1_ratio=.9,
learning_rate=0.9,
Dx_agg='average',
G_agg='average',
AB_agg='full')
ref_batch_size = 200
exps = [dict(batch_size=int(ref_batch_size),
reduction=reduction)
for reduction in np.linspace(5, 5, 1)]
mem = Memory(cachedir=expanduser('~/cache'))
face = misc.face(gray=True)
# Convert from uint8 representation with values between 0 and 255 to
# a floating point representation with values between 0 and 1.
face = face / 255
height, width = face.shape
# Distort the right half of the image
print('Distorting image...')
distorted = face.copy()
# distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2)
# Extract all reference patches from the left half of the image
print('Extracting reference patches...')
t0 = time()
----------
X : np.array
List of datapoints
Returns
-------
n_jobs : int
Number of jobs
list of int
List of number of datapoints per job
list of int
List of start values for every job list
"""
n_datapoints = len(X)
n_jobs = min(effective_n_jobs(self.n_jobs), n_datapoints)
n_datapoints_per_job = np.full(
n_jobs, n_datapoints // n_jobs, dtype=np.int)
n_datapoints_per_job[:n_datapoints % n_jobs] += 1
starts = np.cumsum(n_datapoints_per_job)
return n_jobs, n_datapoints_per_job.tolist(), [0] + starts.tolist()
for i in range (count):
result += [ (idx, 'GPU', '%s #%d' % (dev_name,i) , dev_vram) ]
return result
if cpu_only:
if manual:
return [ (0, 'CPU', 'CPU', 0 ) ]
else:
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
elif type == 'final':
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in (range(min(8, multiprocessing.cpu_count())) if not DEBUG else [0]) ]
class DeletedFilesSearcherSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.debug_paths_stems = client_dict['debug_paths_stems']
return None
#override
def process_data(self, data):
input_path_stem = Path(data[0]).stem
return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def calculate_potential_3D_parallel(true_csd, ele_xx, ele_yy, ele_zz,
csd_x, csd_y, csd_z):
"""
For Mihav's implementation to compute the LFP generated
"""
xlin = csd_x[:,0,0]
ylin = csd_y[0,:,0]
zlin = csd_z[0,0,:]
xlims = [xlin[0], xlin[-1]]
ylims = [ylin[0], ylin[-1]]
zlims = [zlin[0], zlin[-1]]
sigma = 1.0
#tic = time.time()
pots = Parallel(n_jobs=num_cores)(delayed(integrate_3D)(ele_xx[ii],ele_yy[ii],ele_zz[ii],
xlims, ylims, zlims, true_csd,
xlin, ylin, zlin,
csd_x, csd_y, csd_z) for ii in range(len(ele_xx)))
pots = np.array(pots)
pots /= 4*np.pi*sigma
#toc = time.time() - tic
#print toc, 'Total time taken - parallel, sims '
return pots
1
pipeline_2 = ResumablePipeline([], cache_folder=tmpdir)
pipeline_2.name = 'pipeline2'
pipeline_2.sub_steps_savers = [
(SOME_STEP_2, []),
(CHECKPOINT, []),
(SOME_STEP_3, []),
]
dump(pipeline_2, create_pipeline2_path(tmpdir, True))
given_saved_some_step(multiply_by=2, name=SOME_STEP_1, path=create_some_step1_path(tmpdir, True))
given_saved_some_step(multiply_by=4, name=SOME_STEP_2, path=create_some_step2_path(tmpdir, True))
given_saved_some_step(multiply_by=6, name=SOME_STEP_3, path=create_some_step3_path(tmpdir, True))
checkpoint = DefaultCheckpoint()
checkpoint.name = CHECKPOINT
dump(checkpoint, create_some_checkpoint_path(tmpdir, True))
p = ResumablePipeline([
(SOME_STEP_1, MultiplyByN(multiply_by=1)),
(PIPELINE_2, ResumablePipeline([
(SOME_STEP_2, MultiplyByN(multiply_by=1)),
(CHECKPOINT, DefaultCheckpoint()),
(SOME_STEP_3, MultiplyByN(multiply_by=1))
]))
], cache_folder=tmpdir)
p.name = ROOT
return p
internal_dim=2)
test_policy = EpsilonGreedyPolicy(learning_algo, env.nActions(), rng, 1.)
# --- Instantiate agent ---
agent = NeuralAgent(
env,
learning_algo,
parameters.replay_memory_size,
max(env.inputDimensions()[i][0] for i in range(len(env.inputDimensions()))),
parameters.batch_size,
rng,
test_policy=test_policy)
# --- Create unique filename for FindBestController ---
h = hash(vars(parameters), hash_name="sha1")
fname = "test_" + h
print("The parameters hash is: {}".format(h))
print("The parameters are: {}".format(parameters))
# As for the discount factor and the learning rate, one can update periodically the parameter of the epsilon-greedy
# policy implemented by the agent. This controllers has a bit more capabilities, as it allows one to choose more
# precisely when to update epsilon: after every X action, episode or epoch. This parameter can also be reset every
# episode or epoch (or never, hence the resetEvery='none').
agent.attach(bc.EpsilonController(
initial_e=parameters.epsilon_start,
e_decays=parameters.epsilon_decay,
e_min=parameters.epsilon_min,
evaluate_on='action',
periodicity=1,
reset_every='none'))
for line in in_map:
line = line.rstrip()
line_split = line.split()
func_map[line_split[0]] += line_split[1].split(",")
# Get set of all unique functions.
functions = list(set(in_df['function']))
chunk_size = int(len(functions) / proc) + 1
function_chunks = [functions[i:i + chunk_size]
for i in range(0, len(functions), chunk_size)]
# Loop over all functions in parallel and return pandas dataframe for each
# function with regrouped ids (which will are combined together afterwards).
raw_new_ids_dfs = Parallel(n_jobs=proc)(delayed(
convert_func_ids)(func_subset,
in_df,
func_map)
for func_subset in function_chunks)
# Combine all returned DFs into a single DF.
raw_new_ids_combined = pd.concat(raw_new_ids_dfs, sort=False)
if in_format == "contrib":
regrouped_table = pd.pivot_table(raw_new_ids_combined,
index=['sample', 'function', 'taxon',
'taxon_abun',
'taxon_rel_abun'],
aggfunc=np.sum)
elif in_format == "strat":
else:
raise "Unknown format"
else:
format = imgIn.dtype.char
if format == 'f2':
args.format = 'f16'
else:
format = 'f4'
args.format = 'f32'
if imgIn.dtype.char != format:
print "Converting to ", args.format, "(",format,")"
imgIn = imgIn.astype(format)
print (args.output_file.rsplit('.', 1) if args.output_file else args.input_file.rsplit('.',1))
result = Parallel(n_jobs=8)(delayed(convertFace)(args,imgIn,i) for i in xrange(6))
if args.flatten_cubemap:
components = args.output_file.rsplit('.', 1) if args.output_file else args.input_file.rsplit('.',1)
filename = components[0] + "_" + str(imgIn.shape[0]/2) + "_full-cubemap_" +args.format+".raw"
result_arrays = result.sort(key=lambda x: FACE_REMAP_ORDER[x[0]])
numpy.concatenate(tuple([x[1] for x in result])).tofile(open(filename,"wb"))
print "Time elapsed: ",(time.time() - start)
print "Saved processed image as: " + filename
print '== PVRTexTool Wrap Raw Data settings =='
print '= Width x Height : %d x %d' % (imgIn.shape[0]/2 , imgIn.shape[0]/2)
print '= Variable type : "Signed Floating Point"'
print '= Colour space : Linear RGB'
print '= Faces : 6'
print '= MIP-Map levels : 1'
print '= Array Members : 1'
clf = svm.SVC(
verbose=True,
probability=True,
C=0.0001,
kernel="rbf",
gamma=0.001,
class_weight="balanced",
)
clf.fit(train_features, train_labels)
# print("Best estimator found by grid search:")
# print(clf.best_estimator_)
# joblib.dump(clf, saved_classifier_filename)
else:
clf = joblib.load(saved_classifier_filename)
# (test_features, test_labels) = get_test_features_and_labels(load_test_features)
test_labels_bin = label_binarize(test_labels, classes=[-1, 1])
pred_labels = clf.predict(test_features)
pred_confidences = clf.predict_proba(test_features)
plot_roc_curve(test_labels_bin, pred_confidences)
from sklearn.metrics import (
roc_curve,
accuracy_score,
confusion_matrix,
roc_auc_score,