Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def calculate_potential_3D_parallel(true_csd, ele_xx, ele_yy, ele_zz,
csd_x, csd_y, csd_z):
"""
For Mihav's implementation to compute the LFP generated
"""
xlin = csd_x[:,0,0]
ylin = csd_y[0,:,0]
zlin = csd_z[0,0,:]
xlims = [xlin[0], xlin[-1]]
ylims = [ylin[0], ylin[-1]]
zlims = [zlin[0], zlin[-1]]
sigma = 1.0
#tic = time.time()
pots = Parallel(n_jobs=num_cores)(delayed(integrate_3D)(ele_xx[ii],ele_yy[ii],ele_zz[ii],
xlims, ylims, zlims, true_csd,
xlin, ylin, zlin,
csd_x, csd_y, csd_z) for ii in range(len(ele_xx)))
pots = np.array(pots)
pots /= 4*np.pi*sigma
#toc = time.time() - tic
#print toc, 'Total time taken - parallel, sims '
return pots
1
def compute_all_decomposition(output_dir, n_jobs=1):
seeds = pd.read_pickle(join(output_dir, 'seeds.pkl'))
seeds = seeds['seed'].unique()
decompositions = ['dl_rest_positive']
alphas = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7]
for decomposition in decompositions:
if decomposition == 'pca':
components_list = Parallel(n_jobs=n_jobs, verbose=10)(
delayed(compute_pca)(output_dir, seed)
for seed in seeds)
elif decomposition == 'dl_rest':
components_list = Parallel(n_jobs=n_jobs, verbose=10)(
delayed(compute_sparse_components)
(output_dir, seed,
symmetric_init=False,
alpha=alpha,
init='rest')
for seed in seeds
for alpha in alphas)
elif decomposition == 'dl_rest_positive':
components_list = Parallel(n_jobs=n_jobs, verbose=10)(
delayed(compute_sparse_components)
(output_dir, seed,
symmetric_init=False,
positive=True,
alpha=alpha,
init='rest')
for seed in seeds
def load_annotation_files(filenames, num_workers=1):
t = time.time()
if num_workers > 1:
results = joblib.Parallel(n_jobs=num_workers)(
joblib.delayed(_load_pascal_annotation)(fname)
for fname in filenames
)
else:
results = [_load_pascal_annotation(fname) for fname in filenames]
images, objects_dfs = zip(*results)
images_df = pd.DataFrame(list(images))
objects_df = pd.concat(objects_dfs)
print('load_annotation_files: finished in {:.3f} s'.format(
time.time() - t))
return images_df, objects_df
def _fit_transform(self, X, y, func, fitted=False):
"""
Private function to fit and/or transform on demand.
Return value (transformers and/or transformed X data) depends
on the passed function.
``fitted=True`` ensures the fitted transformers are used.
"""
transformers = list(
self._iter(fitted=fitted, replace_strings=True))
try:
return Parallel(n_jobs=self.n_jobs)(
delayed(func)(
transformer=clone(trans) if not fitted else trans,
X=_safe_indexing(X, column, axis=1),
y=y,
weight=weight,
message_clsname='ColumnTransformer',
message=self._log_message(name, idx, len(transformers)))
for idx, (name, trans, column, weight) in enumerate(
self._iter(fitted=fitted, replace_strings=True), 1))
except ValueError as e:
if "Expected 2D array, got 1D array instead" in str(e):
raise ValueError(_ERR_MSG_1DCOLUMN)
else:
raise
def preprocess_audio(in_dir: str, out_dir: str, sample_rate: int = 22050):
"""
Preprocess audios given base directory and target directory with multi thread function.
:param in_dir: base directory of data files
:param out_dir: target directory
:param sample_rate: target audio sample rate
"""
in_wav_list, out_wav_list = __class__.__get_wave_file_list(in_dir, out_dir)
# do multi process
Parallel(n_jobs=__class__.num_workers)(
delayed(process_all)
(*args, sample_rate) for args in tqdm(zip(in_wav_list, out_wav_list))
)
gene_names = np.arange(X.shape[1])
X = utils.to_array_or_spmatrix(X)
Y = utils.to_array_or_spmatrix(Y)
# inconsistent behaviour from csr and csc
if sparse.issparse(X):
X = X.tocsr()
if sparse.issparse(Y):
Y = Y.tocsr()
if measure == "difference":
difference = mean_difference(X, Y)
if measure == "ttest":
difference = t_statistic(X, Y)
if measure == "ranksum":
difference = rank_sum_statistic(X, Y)
elif measure == "emd":
difference = joblib.Parallel(n_jobs)(
joblib.delayed(EMD)(
select.select_cols(X, idx=i), select.select_cols(Y, idx=i)
)
for i in range(X.shape[1])
)
difference = np.array(difference) * np.sign(mean_difference(X, Y))
result = pd.DataFrame({measure: difference}, index=gene_names)
if direction == "up":
if measure == "ranksum":
result = result.sort_index().sort_values([measure], ascending=True)
else:
result = result.sort_index().sort_values([measure], ascending=False)
elif direction == "down":
if measure == "ranksum":
result = result.sort_index().sort_values([measure], ascending=False)
else:
assert len(principal) == len(trades)
assert len(lot_size) == len(trades)
symbols2mkt = {m.symbol: m for m in mkt}
symbols = [t.symbol for t in trades]
assert set(symbols) == set(symbols2mkt.keys())
# Transform trades following the lot_size
mult_trades = []
for (trade, lot) in zip(trades, lot_size):
mult_trade = trade.copy()
mult_trade["amount"] *= lot
mult_trades.append(mult_trade)
# Construct positions and return Portfolio
positions = Parallel(n_jobs=-1, max_nbytes=None)(
[
delayed(calc_positions)(
trade, symbols2mkt[trade.symbol], principal=principal_per_asset
)
for (trade, principal_per_asset) in zip(mult_trades, principal)
]
)
symbols = [p.symbol for p in positions]
if len(set(symbols)) != len(symbols):
positions = _fusion_positions(positions)
return Portfolio(positions)
def predict_proba_raw(self,X):
preds = np.zeros((X.shape[0], self.n))
Parallel(n_jobs=self.njobs, verbose=0, require="sharedmem")(delayed(self._decision_function_single)(choice, X, preds, 0) for choice in range(self.n))
_apply_smoothing(preds, self.smooth, self.counters)
return preds
if n_jobs == 1:
with ProgressBar(enabled=(verbose >= 1)) as p:
for k in xrange(n):
p.update(k, n, "Sampling acc. reward")
np.random.seed(seed)
r = mymdp.sample_accum_reward(states[k], gamma, policy, n_eps=n_eps, l_eps=l_eps)
rewards[k] = np.mean(r)
else:
jobs = []
b = int(n / n_jobs)+1
k = 0
while k < n:
kp = min(k+b, n)
jobs.append((run1, [mymdp, policy, states[k:kp], gamma, n_eps, l_eps, seed], {"verbose": verbose-1, "n_jobs": 1}))
k = kp
res = Parallel(n_jobs=n_jobs, verbose=verbose)(jobs)
rewards = np.concatenate(res, axis=0)
return rewards
def parallel_recall_at_k(train_data, heldout_data, U, V, batch_users=2000, k=20,
mu=None, vad_data=None, agg=np.nanmean, clear_invalid=False, n_jobs = 16, cache=False):
n_users = train_data.shape[0]
res = Parallel(n_jobs=n_jobs)(delayed(recall_at_k_batch)(train_data, heldout_data,
U, V.T, user_idx, k=k, mu=mu,
vad_data=vad_data, clear_invalid=clear_invalid, cache=cache)
for user_idx in user_idx_generator(n_users, batch_users))
mn_recall = np.hstack(res)
# print mn_recall
if callable(agg):
return agg(mn_recall)
return mn_recall