Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_base_networks():
network_names = get_base_networks()
input_shape = (4,)
for name in network_names:
model = base_network(name, input_shape)
assert isinstance(model, Model)
search_k=self.search_k,
precompute=self.precompute,
verbose=self.verbose)
loss_monitor = 'loss'
try:
triplet_loss_func = triplet_loss(distance=self.distance,
margin=self.margin)
except KeyError:
raise ValueError('Loss function `{}` not implemented.'.format(self.distance))
if self.model_ is None:
if type(self.model_def) is str:
input_size = (X.shape[-1],)
self.model_, anchor_embedding, _, _ = \
triplet_network(base_network(self.model_def, input_size),
embedding_dims=self.embedding_dims)
else:
self.model_, anchor_embedding, _, _ = \
triplet_network(self.model_def,
embedding_dims=self.embedding_dims)
if Y is None:
self.model_.compile(optimizer='adam', loss=triplet_loss_func)
else:
if is_categorical(self.supervision_metric):
if not is_multiclass(self.supervision_metric):
if not is_hinge(self.supervision_metric):
# Binary logistic classifier
if len(Y.shape) > 1:
self.n_classes = Y.shape[-1]
else: