Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Multiclass Linear SVM output
supervised_output = Dense(self.n_classes, activation='linear',
name='supervised',
kernel_regularizer=regularizers.l2())(anchor_embedding)
else:
# Regression
if len(Y.shape) > 1:
self.n_classes = Y.shape[-1]
else:
self.n_classes = 1
supervised_output = Dense(self.n_classes, activation='linear',
name='supervised')(anchor_embedding)
supervised_loss = keras.losses.get(self.supervision_metric)
if self.supervision_metric == 'sparse_categorical_crossentropy':
supervised_loss = semi_supervised_loss(supervised_loss)
final_network = Model(inputs=self.model_.inputs,
outputs=[self.model_.output,
supervised_output])
self.model_ = final_network
self.model_.compile(
optimizer='adam',
loss={
'stacked_triplets': triplet_loss_func,
'supervised': supervised_loss
},
loss_weights={
'stacked_triplets': 1 - self.supervision_weight,
'supervised': self.supervision_weight})
# Store dedicated classification model