How to use the ipywidgets.widgets function in ipywidgets

To help you get started, we’ve selected a few ipywidgets examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github hail-is / hail / hail / python / hail / experimental / interact.py View on Github external
def interact(obj):
    tab = widgets.Tab()
    base_style = widgets.ButtonStyle()
    selected_style = widgets.ButtonStyle(button_color='#DDFFDD', font_weight='bold')

    if isinstance(obj, hl.Table):
        glob = widgets.Button(description='globals',
                              layout=widgets.Layout(width='150px', height='30px'))
        rows = widgets.Button(description='rows',
                              layout=widgets.Layout(width='150px', height='200px'))
        rows.style = selected_style

        globals_frames = []
        globals_frames.append(widgets.HTML(
            f'<p><big>Global fields, with one value in the dataset.</big></p>\n'
            f'<p>Commonly used methods:</p>\n'
            f'<ul>'
            f'<li>{html_link("annotate_globals", "https://hail.is/docs/0.2/hail.Table.html#hail.Table.annotate_globals")}: '
            f'add new global fields.</li>'
            f'</ul>'
        ))
        append_struct_frames(obj.globals.dtype, globals_frames)

        row_frames = []
        row_frames.append(widgets.HTML(
github genepattern / genepattern-notebook / genepattern / local_widgets.py View on Github external
def __init__(self, lsid="", **kwargs):
        super(GPModuleWidget, self).__init__(lsid)
        widgets.DOMWidget.__init__(self, **kwargs)
        self.lsid = lsid
github Alpine-DAV / ascent / src / ascent / python / ascent_jupyter_bridge / ascent_jupyter_bridge / kernel.py View on Github external
def pick_backend(self):
        backends = get_backend_list()
        fields_to_display = ["codename", "date", "protocol", "argv"]

        if backends is None or len(backends) == 0:
            return None

        names = sorted(list(backends.keys()))
        select = widgets.Dropdown(options=names, value=names[len(names) - 1])
        button = widgets.Button(description="Connect")

        max_len = 0
        for f in fields_to_display:
            if len(f) > max_len:
                max_len = len(f)

        # setup labels to display fields from `fields_to_display`
        label_hboxes = []
        dynamic_labels = {}
        for f in fields_to_display:
            static_label = widgets.Label(value="{} :".format(f))
            dynamic_label = widgets.Label(value="")
            dynamic_labels[f] = dynamic_label
            label_hboxes.append(widgets.HBox([static_label, dynamic_label]))
github geoscixyz / em_examples / em_examples / MarineCSEM1D.py View on Github external
Q1=interactive(
    csem_fields_app,
    rho0=FloatText(value=1e8, description='$\\rho_{0} \ (\Omega m)$'),
    rho1=FloatText(value=0.3, description='$\\rho_{1} \ (\Omega m)$'),
    rho2=FloatText(value=1., description='$\\rho_{2} \ (\Omega m)$'),
    rho3=FloatText(value=100., description='$\\rho_{3} \ (\Omega m)$'),
    rho4=FloatText(value=1., description='$\\rho_{4} \ (\Omega m)$'),
    zsrc=FloatText(value=-950., description='src height (m)'),
    rv_rh=FloatText(value=1., description='$\\rho_{2 \ v} / \\rho_{2 \ h}$'),
    dz1=FloatText(value=1000., description="dz1 (m)"),
    dz2=FloatText(value=1000., description="dz2 (m)"),
    dz3=FloatText(value=200., description="dz3 (m)"),
    frequency=FloatText(value=0.5, description='f (Hz)'),
    Field=ToggleButtons(options =['E','H','P'],value='E'),
    Plane=ToggleButtons(options =['XZ','YZ'],value='XZ'),
    Fixed=widgets.widget_bool.Checkbox(value=False),
    vmin=FloatText(value=None),
    vmax=FloatText(value=None),
    __manual=True
        )
    return Q1
github NeurodataWithoutBorders / nwb-jupyter-widgets / nwbwidgets / base.py View on Github external
def lazy_tabs(in_dict: dict, node, style: GroupingWidget = widgets.Tab) -> GroupingWidget:
    """Creates a lazy tab object where multiple visualizations can be used for a single node and are generated on the
    fly

    Parameters
    ----------
    in_dict: dict
        keys are labels for tabs and values are functions
    node: NWBDataInterface
        instance of neurodata type to visualize
    style: ipywidgets.Tab or ipywidgets.Accordion, optional
        which way to present the data

    Returns
    -------
    tab: widget
github DiODeProject / MuMoT / mumot / controllers.py View on Github external
def _createAdvancedWidgets(self, advancedOpts, continuousReplot=False):
        # Max time slider
        if not advancedOpts['maxTime'][-1]:
            maxTime = advancedOpts['maxTime']
            widget = widgets.FloatSlider(value=maxTime[0], min=maxTime[1],
                                         max=maxTime[2], step=maxTime[3],
                                         readout_format='.' + str(utils._count_sig_decimals(str(maxTime[3]))) + 'f',
                                         description='Simulation time:',
                                         style={'description_width': 'initial'},
                                         # layout=widgets.Layout(width='50%'),
                                         disabled=False,
                                         continuous_update=continuousReplot)
            self._widgetsExtraParams['maxTime'] = widget

        # Random seed input field
        if not advancedOpts['randomSeed'][-1]:
            widget = widgets.IntText(
                value=advancedOpts['randomSeed'][0],
                description='Random seed:',
                style={'description_width': 'initial'},
                disabled=False
github fastai / fastai / fastai / widgets / image_cleaner.py View on Github external
def make_img_widget(img:bytes, layout=Layout(height='250px', width='300px'), format='jpg') -> widgets.Image:
        "Returns an image widget for specified file name `img`."
        return widgets.Image(value=img, format=format, layout=layout)
github NeurodataWithoutBorders / nwb-jupyter-widgets / nwbwidgets / misc.py View on Github external
super().__init__()

        self.units = units

        self.trials = self.get_trials()
        if self.trials is None:
            self.children = [widgets.HTML('No trials present')]
            return

        groups = list(self.trials.colnames)

        rows_controller = widgets.Dropdown(options=[None] + list(groups), description='rows')
        cols_controller = widgets.Dropdown(options=[None] + list(groups), description='cols')

        trial_event_controller = make_trial_event_controller(self.trials)
        unit_controller = widgets.Dropdown(options=range(len(units['spike_times'].data)), value=unit_index,
                                           description='unit')

        before_slider = widgets.FloatSlider(.1, min=0, max=5., description='before (s)', continuous_update=False)
        after_slider = widgets.FloatSlider(1., min=0, max=5., description='after (s)', continuous_update=False)

        self.controls = {
            'units': fixed(units),
            'time_intervals': fixed(self.trials),
            'index': unit_controller,
            'after': after_slider,
            'before': before_slider,
            'align_by': trial_event_controller,
            'rows_label': rows_controller,
            'cols_label': cols_controller
        }
github NeurodataWithoutBorders / nwb-jupyter-widgets / nwbwidgets / controllers.py View on Github external
if self.dtype == 'float':
            slider_kwargs.update(
                readout_format='.1f',
                step=0.1,
                description='time window (s)',
                layout=Layout(width='100%')
            )
            slider_kwargs.update(kwargs)
            return widgets.FloatRangeSlider(**slider_kwargs)
        elif self.dtype == 'int':
            slider_kwargs.update(
                description='unit window',
                layout=Layout(height='100%')
            )
            slider_kwargs.update(kwargs)
            return widgets.IntRangeSlider(**slider_kwargs)
        else:
            raise ValueError('Unrecognized dtype: {}'.format(self.dtype))
github NeurodataWithoutBorders / nwb-jupyter-widgets / nwbwidgets / misc.py View on Github external
for i in range(ch1+1-ch0):
                ax[bd].plot(xx, data[:, i] - mu_array[i] + yticks[i])
            ax[bd].set_ylabel('Ch #', fontsize=20)
            ax[bd].set_yticks(yticks)
            ax[bd].set_yticklabels([str(i) for i in range(ch0, ch1+1)])
            ax[bd].tick_params(axis='both', which='major', labelsize=16)
        ax[bd].set_xlabel('Time [ms]', fontsize=20)
        return fig

    nSamples = node.data.shape[0]
    nChannels = node.data.shape[1]
    nBands = node.data.shape[2]
    fs = node.rate

    # Controls
    field_lay = widgets.Layout(max_height='40px', max_width='100px',
                               min_height='30px', min_width='70px')
    x0 = widgets.BoundedIntText(value=0, min=0, max=int(1000*nSamples/fs-100),
                                layout=field_lay)
    x1 = widgets.BoundedIntText(value=nSamples, min=100, max=int(1000*nSamples/fs),
                                layout=field_lay)
    ch0 = widgets.BoundedIntText(value=0, min=0, max=int(nChannels-1), layout=field_lay)
    ch1 = widgets.BoundedIntText(value=10, min=0, max=int(nChannels-1), layout=field_lay)

    controls = {
        'x0': x0,
        'x1': x1,
        'ch0': ch0,
        'ch1': ch1
    }
    out_fig = widgets.interactive_output(control_plot, controls)