Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _fit_gpu(self, Ciu_host, Cui_host, show_progress=True):
""" specialized training on the gpu. copies inputs to/from cuda device """
if not implicit.cuda.HAS_CUDA:
raise ValueError("No CUDA extension has been built, can't train on GPU.")
if self.dtype == np.float64:
log.warning("Factors of dtype float64 aren't supported with gpu fitting. "
"Converting factors to float32")
self.item_factors = self.item_factors.astype(np.float32)
self.user_factors = self.user_factors.astype(np.float32)
Ciu = implicit.cuda.CuCSRMatrix(Ciu_host)
Cui = implicit.cuda.CuCSRMatrix(Cui_host)
X = implicit.cuda.CuDenseMatrix(self.user_factors.astype(np.float32))
Y = implicit.cuda.CuDenseMatrix(self.item_factors.astype(np.float32))
solver = implicit.cuda.CuLeastSquaresSolver(self.factors)
log.debug("Running %i ALS iterations", self.iterations)
with tqdm(total=self.iterations, disable=not show_progress) as progress:
for iteration in range(self.iterations):
s = time.time()
solver.least_squares(Cui, X, Y, self.regularization, self.cg_steps)
solver.least_squares(Ciu, Y, X, self.regularization, self.cg_steps)
progress.update(1)
if self.fit_callback:
self.fit_callback(iteration, time.time() - s)
if self.calculate_training_loss:
def _fit_gpu(self, Ciu_host, Cui_host, show_progress=True):
""" specialized training on the gpu. copies inputs to/from cuda device """
if not implicit.cuda.HAS_CUDA:
raise ValueError("No CUDA extension has been built, can't train on GPU.")
if self.dtype == np.float64:
log.warning("Factors of dtype float64 aren't supported with gpu fitting. "
"Converting factors to float32")
self.item_factors = self.item_factors.astype(np.float32)
self.user_factors = self.user_factors.astype(np.float32)
Ciu = implicit.cuda.CuCSRMatrix(Ciu_host)
Cui = implicit.cuda.CuCSRMatrix(Cui_host)
X = implicit.cuda.CuDenseMatrix(self.user_factors.astype(np.float32))
Y = implicit.cuda.CuDenseMatrix(self.item_factors.astype(np.float32))
solver = implicit.cuda.CuLeastSquaresSolver(self.factors)
log.debug("Running %i ALS iterations", self.iterations)
with tqdm(total=self.iterations, disable=not show_progress) as progress:
for iteration in range(self.iterations):
s = time.time()
solver.least_squares(Cui, X, Y, self.regularization, self.cg_steps)
solver.least_squares(Ciu, Y, X, self.regularization, self.cg_steps)
progress.update(1)
if self.fit_callback:
self.fit_callback(iteration, time.time() - s)